Step |
Hyp |
Ref |
Expression |
1 |
|
thinccisod.c |
|- C = ( CatCat ` U ) |
2 |
|
thinccisod.r |
|- R = ( Base ` X ) |
3 |
|
thinccisod.s |
|- S = ( Base ` Y ) |
4 |
|
thinccisod.h |
|- H = ( Hom ` X ) |
5 |
|
thinccisod.j |
|- J = ( Hom ` Y ) |
6 |
|
thinccisod.u |
|- ( ph -> U e. V ) |
7 |
|
thinccisod.x |
|- ( ph -> X e. U ) |
8 |
|
thinccisod.y |
|- ( ph -> Y e. U ) |
9 |
|
thinccisod.xt |
|- ( ph -> X e. ThinCat ) |
10 |
|
thinccisod.yt |
|- ( ph -> Y e. ThinCat ) |
11 |
|
thinccisod.f |
|- ( ph -> F : R -1-1-onto-> S ) |
12 |
|
thinccisod.1 |
|- ( ( ph /\ ( x e. R /\ y e. R ) ) -> ( ( x H y ) = (/) <-> ( ( F ` x ) J ( F ` y ) ) = (/) ) ) |
13 |
|
f1of |
|- ( F : R -1-1-onto-> S -> F : R --> S ) |
14 |
11 13
|
syl |
|- ( ph -> F : R --> S ) |
15 |
|
fvexd |
|- ( ph -> ( Base ` X ) e. _V ) |
16 |
2 15
|
eqeltrid |
|- ( ph -> R e. _V ) |
17 |
14 16
|
fexd |
|- ( ph -> F e. _V ) |
18 |
12
|
ralrimivva |
|- ( ph -> A. x e. R A. y e. R ( ( x H y ) = (/) <-> ( ( F ` x ) J ( F ` y ) ) = (/) ) ) |
19 |
18 11
|
jca |
|- ( ph -> ( A. x e. R A. y e. R ( ( x H y ) = (/) <-> ( ( F ` x ) J ( F ` y ) ) = (/) ) /\ F : R -1-1-onto-> S ) ) |
20 |
|
fveq1 |
|- ( f = F -> ( f ` x ) = ( F ` x ) ) |
21 |
|
fveq1 |
|- ( f = F -> ( f ` y ) = ( F ` y ) ) |
22 |
20 21
|
oveq12d |
|- ( f = F -> ( ( f ` x ) J ( f ` y ) ) = ( ( F ` x ) J ( F ` y ) ) ) |
23 |
22
|
eqeq1d |
|- ( f = F -> ( ( ( f ` x ) J ( f ` y ) ) = (/) <-> ( ( F ` x ) J ( F ` y ) ) = (/) ) ) |
24 |
23
|
bibi2d |
|- ( f = F -> ( ( ( x H y ) = (/) <-> ( ( f ` x ) J ( f ` y ) ) = (/) ) <-> ( ( x H y ) = (/) <-> ( ( F ` x ) J ( F ` y ) ) = (/) ) ) ) |
25 |
24
|
2ralbidv |
|- ( f = F -> ( A. x e. R A. y e. R ( ( x H y ) = (/) <-> ( ( f ` x ) J ( f ` y ) ) = (/) ) <-> A. x e. R A. y e. R ( ( x H y ) = (/) <-> ( ( F ` x ) J ( F ` y ) ) = (/) ) ) ) |
26 |
|
f1oeq1 |
|- ( f = F -> ( f : R -1-1-onto-> S <-> F : R -1-1-onto-> S ) ) |
27 |
25 26
|
anbi12d |
|- ( f = F -> ( ( A. x e. R A. y e. R ( ( x H y ) = (/) <-> ( ( f ` x ) J ( f ` y ) ) = (/) ) /\ f : R -1-1-onto-> S ) <-> ( A. x e. R A. y e. R ( ( x H y ) = (/) <-> ( ( F ` x ) J ( F ` y ) ) = (/) ) /\ F : R -1-1-onto-> S ) ) ) |
28 |
17 19 27
|
spcedv |
|- ( ph -> E. f ( A. x e. R A. y e. R ( ( x H y ) = (/) <-> ( ( f ` x ) J ( f ` y ) ) = (/) ) /\ f : R -1-1-onto-> S ) ) |
29 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
30 |
9
|
thinccd |
|- ( ph -> X e. Cat ) |
31 |
7 30
|
elind |
|- ( ph -> X e. ( U i^i Cat ) ) |
32 |
1 29 6
|
catcbas |
|- ( ph -> ( Base ` C ) = ( U i^i Cat ) ) |
33 |
31 32
|
eleqtrrd |
|- ( ph -> X e. ( Base ` C ) ) |
34 |
10
|
thinccd |
|- ( ph -> Y e. Cat ) |
35 |
8 34
|
elind |
|- ( ph -> Y e. ( U i^i Cat ) ) |
36 |
35 32
|
eleqtrrd |
|- ( ph -> Y e. ( Base ` C ) ) |
37 |
1 29 2 3 4 5 6 33 36 9 10
|
thincciso |
|- ( ph -> ( X ( ~=c ` C ) Y <-> E. f ( A. x e. R A. y e. R ( ( x H y ) = (/) <-> ( ( f ` x ) J ( f ` y ) ) = (/) ) /\ f : R -1-1-onto-> S ) ) ) |
38 |
28 37
|
mpbird |
|- ( ph -> X ( ~=c ` C ) Y ) |