Metamath Proof Explorer


Theorem thinccisod

Description: Two thin categories are isomorphic if the induced preorders are order-isomorphic (deduction form). Example 3.26(2) of Adamek p. 33. (Contributed by Zhi Wang, 22-Sep-2025)

Ref Expression
Hypotheses thinccisod.c 𝐶 = ( CatCat ‘ 𝑈 )
thinccisod.r 𝑅 = ( Base ‘ 𝑋 )
thinccisod.s 𝑆 = ( Base ‘ 𝑌 )
thinccisod.h 𝐻 = ( Hom ‘ 𝑋 )
thinccisod.j 𝐽 = ( Hom ‘ 𝑌 )
thinccisod.u ( 𝜑𝑈𝑉 )
thinccisod.x ( 𝜑𝑋𝑈 )
thinccisod.y ( 𝜑𝑌𝑈 )
thinccisod.xt ( 𝜑𝑋 ∈ ThinCat )
thinccisod.yt ( 𝜑𝑌 ∈ ThinCat )
thinccisod.f ( 𝜑𝐹 : 𝑅1-1-onto𝑆 )
thinccisod.1 ( ( 𝜑 ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) = ∅ ) )
Assertion thinccisod ( 𝜑𝑋 ( ≃𝑐𝐶 ) 𝑌 )

Proof

Step Hyp Ref Expression
1 thinccisod.c 𝐶 = ( CatCat ‘ 𝑈 )
2 thinccisod.r 𝑅 = ( Base ‘ 𝑋 )
3 thinccisod.s 𝑆 = ( Base ‘ 𝑌 )
4 thinccisod.h 𝐻 = ( Hom ‘ 𝑋 )
5 thinccisod.j 𝐽 = ( Hom ‘ 𝑌 )
6 thinccisod.u ( 𝜑𝑈𝑉 )
7 thinccisod.x ( 𝜑𝑋𝑈 )
8 thinccisod.y ( 𝜑𝑌𝑈 )
9 thinccisod.xt ( 𝜑𝑋 ∈ ThinCat )
10 thinccisod.yt ( 𝜑𝑌 ∈ ThinCat )
11 thinccisod.f ( 𝜑𝐹 : 𝑅1-1-onto𝑆 )
12 thinccisod.1 ( ( 𝜑 ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) = ∅ ) )
13 f1of ( 𝐹 : 𝑅1-1-onto𝑆𝐹 : 𝑅𝑆 )
14 11 13 syl ( 𝜑𝐹 : 𝑅𝑆 )
15 fvexd ( 𝜑 → ( Base ‘ 𝑋 ) ∈ V )
16 2 15 eqeltrid ( 𝜑𝑅 ∈ V )
17 14 16 fexd ( 𝜑𝐹 ∈ V )
18 12 ralrimivva ( 𝜑 → ∀ 𝑥𝑅𝑦𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) = ∅ ) )
19 18 11 jca ( 𝜑 → ( ∀ 𝑥𝑅𝑦𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) = ∅ ) ∧ 𝐹 : 𝑅1-1-onto𝑆 ) )
20 fveq1 ( 𝑓 = 𝐹 → ( 𝑓𝑥 ) = ( 𝐹𝑥 ) )
21 fveq1 ( 𝑓 = 𝐹 → ( 𝑓𝑦 ) = ( 𝐹𝑦 ) )
22 20 21 oveq12d ( 𝑓 = 𝐹 → ( ( 𝑓𝑥 ) 𝐽 ( 𝑓𝑦 ) ) = ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) )
23 22 eqeq1d ( 𝑓 = 𝐹 → ( ( ( 𝑓𝑥 ) 𝐽 ( 𝑓𝑦 ) ) = ∅ ↔ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) = ∅ ) )
24 23 bibi2d ( 𝑓 = 𝐹 → ( ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓𝑥 ) 𝐽 ( 𝑓𝑦 ) ) = ∅ ) ↔ ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) = ∅ ) ) )
25 24 2ralbidv ( 𝑓 = 𝐹 → ( ∀ 𝑥𝑅𝑦𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓𝑥 ) 𝐽 ( 𝑓𝑦 ) ) = ∅ ) ↔ ∀ 𝑥𝑅𝑦𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) = ∅ ) ) )
26 f1oeq1 ( 𝑓 = 𝐹 → ( 𝑓 : 𝑅1-1-onto𝑆𝐹 : 𝑅1-1-onto𝑆 ) )
27 25 26 anbi12d ( 𝑓 = 𝐹 → ( ( ∀ 𝑥𝑅𝑦𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓𝑥 ) 𝐽 ( 𝑓𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅1-1-onto𝑆 ) ↔ ( ∀ 𝑥𝑅𝑦𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) = ∅ ) ∧ 𝐹 : 𝑅1-1-onto𝑆 ) ) )
28 17 19 27 spcedv ( 𝜑 → ∃ 𝑓 ( ∀ 𝑥𝑅𝑦𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓𝑥 ) 𝐽 ( 𝑓𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅1-1-onto𝑆 ) )
29 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
30 9 thinccd ( 𝜑𝑋 ∈ Cat )
31 7 30 elind ( 𝜑𝑋 ∈ ( 𝑈 ∩ Cat ) )
32 1 29 6 catcbas ( 𝜑 → ( Base ‘ 𝐶 ) = ( 𝑈 ∩ Cat ) )
33 31 32 eleqtrrd ( 𝜑𝑋 ∈ ( Base ‘ 𝐶 ) )
34 10 thinccd ( 𝜑𝑌 ∈ Cat )
35 8 34 elind ( 𝜑𝑌 ∈ ( 𝑈 ∩ Cat ) )
36 35 32 eleqtrrd ( 𝜑𝑌 ∈ ( Base ‘ 𝐶 ) )
37 1 29 2 3 4 5 6 33 36 9 10 thincciso ( 𝜑 → ( 𝑋 ( ≃𝑐𝐶 ) 𝑌 ↔ ∃ 𝑓 ( ∀ 𝑥𝑅𝑦𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓𝑥 ) 𝐽 ( 𝑓𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅1-1-onto𝑆 ) ) )
38 28 37 mpbird ( 𝜑𝑋 ( ≃𝑐𝐶 ) 𝑌 )