Step |
Hyp |
Ref |
Expression |
1 |
|
thinccisod.c |
⊢ 𝐶 = ( CatCat ‘ 𝑈 ) |
2 |
|
thinccisod.r |
⊢ 𝑅 = ( Base ‘ 𝑋 ) |
3 |
|
thinccisod.s |
⊢ 𝑆 = ( Base ‘ 𝑌 ) |
4 |
|
thinccisod.h |
⊢ 𝐻 = ( Hom ‘ 𝑋 ) |
5 |
|
thinccisod.j |
⊢ 𝐽 = ( Hom ‘ 𝑌 ) |
6 |
|
thinccisod.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
7 |
|
thinccisod.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) |
8 |
|
thinccisod.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) |
9 |
|
thinccisod.xt |
⊢ ( 𝜑 → 𝑋 ∈ ThinCat ) |
10 |
|
thinccisod.yt |
⊢ ( 𝜑 → 𝑌 ∈ ThinCat ) |
11 |
|
thinccisod.f |
⊢ ( 𝜑 → 𝐹 : 𝑅 –1-1-onto→ 𝑆 ) |
12 |
|
thinccisod.1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) |
13 |
|
f1of |
⊢ ( 𝐹 : 𝑅 –1-1-onto→ 𝑆 → 𝐹 : 𝑅 ⟶ 𝑆 ) |
14 |
11 13
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑅 ⟶ 𝑆 ) |
15 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ 𝑋 ) ∈ V ) |
16 |
2 15
|
eqeltrid |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
17 |
14 16
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
18 |
12
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) |
19 |
18 11
|
jca |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ∧ 𝐹 : 𝑅 –1-1-onto→ 𝑆 ) ) |
20 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
21 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
22 |
20 21
|
oveq12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
23 |
22
|
eqeq1d |
⊢ ( 𝑓 = 𝐹 → ( ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ↔ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) |
24 |
23
|
bibi2d |
⊢ ( 𝑓 = 𝐹 → ( ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ↔ ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) ) |
25 |
24
|
2ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ↔ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) ) |
26 |
|
f1oeq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 : 𝑅 –1-1-onto→ 𝑆 ↔ 𝐹 : 𝑅 –1-1-onto→ 𝑆 ) ) |
27 |
25 26
|
anbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ↔ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ∧ 𝐹 : 𝑅 –1-1-onto→ 𝑆 ) ) ) |
28 |
17 19 27
|
spcedv |
⊢ ( 𝜑 → ∃ 𝑓 ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) |
29 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
30 |
9
|
thinccd |
⊢ ( 𝜑 → 𝑋 ∈ Cat ) |
31 |
7 30
|
elind |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑈 ∩ Cat ) ) |
32 |
1 29 6
|
catcbas |
⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( 𝑈 ∩ Cat ) ) |
33 |
31 32
|
eleqtrrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
34 |
10
|
thinccd |
⊢ ( 𝜑 → 𝑌 ∈ Cat ) |
35 |
8 34
|
elind |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑈 ∩ Cat ) ) |
36 |
35 32
|
eleqtrrd |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
37 |
1 29 2 3 4 5 6 33 36 9 10
|
thincciso |
⊢ ( 𝜑 → ( 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ↔ ∃ 𝑓 ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) ) |
38 |
28 37
|
mpbird |
⊢ ( 𝜑 → 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ) |