| Step |
Hyp |
Ref |
Expression |
| 1 |
|
thincciso.c |
⊢ 𝐶 = ( CatCat ‘ 𝑈 ) |
| 2 |
|
thincciso.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 3 |
|
thincciso.r |
⊢ 𝑅 = ( Base ‘ 𝑋 ) |
| 4 |
|
thincciso.s |
⊢ 𝑆 = ( Base ‘ 𝑌 ) |
| 5 |
|
thincciso.h |
⊢ 𝐻 = ( Hom ‘ 𝑋 ) |
| 6 |
|
thincciso.j |
⊢ 𝐽 = ( Hom ‘ 𝑌 ) |
| 7 |
|
thincciso.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
| 8 |
|
thincciso.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 9 |
|
thincciso.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 10 |
|
thincciso.xt |
⊢ ( 𝜑 → 𝑋 ∈ ThinCat ) |
| 11 |
|
thincciso.yt |
⊢ ( 𝜑 → 𝑌 ∈ ThinCat ) |
| 12 |
|
eqid |
⊢ ( Iso ‘ 𝐶 ) = ( Iso ‘ 𝐶 ) |
| 13 |
1
|
catccat |
⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |
| 14 |
7 13
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 15 |
12 2 14 8 9
|
cic |
⊢ ( 𝜑 → ( 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ↔ ∃ 𝑎 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) ) |
| 16 |
|
opex |
⊢ 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ∈ V |
| 17 |
16
|
a1i |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ∈ V ) |
| 18 |
|
biimp |
⊢ ( ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) → ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ) |
| 19 |
18
|
2ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) → ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ) |
| 20 |
19
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ) |
| 21 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → 𝑌 ∈ ThinCat ) |
| 22 |
|
eqid |
⊢ ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) = ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) |
| 23 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → 𝑋 ∈ ThinCat ) |
| 24 |
23
|
thinccd |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → 𝑋 ∈ Cat ) |
| 25 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) |
| 26 |
|
f1of |
⊢ ( 𝑓 : 𝑅 –1-1-onto→ 𝑆 → 𝑓 : 𝑅 ⟶ 𝑆 ) |
| 27 |
25 26
|
syl |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → 𝑓 : 𝑅 ⟶ 𝑆 ) |
| 28 |
|
biimpr |
⊢ ( ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) → ( ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ → ( 𝑥 𝐻 𝑦 ) = ∅ ) ) |
| 29 |
28
|
2ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) → ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ → ( 𝑥 𝐻 𝑦 ) = ∅ ) ) |
| 30 |
29
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ → ( 𝑥 𝐻 𝑦 ) = ∅ ) ) |
| 31 |
3 4 5 6 24 21 27 22 30
|
functhinc |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → ( 𝑓 ( 𝑋 Func 𝑌 ) ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) ↔ ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) = ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) ) ) |
| 32 |
22 31
|
mpbiri |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → 𝑓 ( 𝑋 Func 𝑌 ) ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) ) |
| 33 |
3 6 5 21 32
|
fullthinc |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → ( 𝑓 ( 𝑋 Full 𝑌 ) ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) ↔ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ) ) |
| 34 |
20 33
|
mpbird |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → 𝑓 ( 𝑋 Full 𝑌 ) ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) ) |
| 35 |
|
df-br |
⊢ ( 𝑓 ( 𝑋 Full 𝑌 ) ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) ↔ 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ∈ ( 𝑋 Full 𝑌 ) ) |
| 36 |
34 35
|
sylib |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ∈ ( 𝑋 Full 𝑌 ) ) |
| 37 |
23 32
|
thincfth |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → 𝑓 ( 𝑋 Faith 𝑌 ) ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) ) |
| 38 |
|
df-br |
⊢ ( 𝑓 ( 𝑋 Faith 𝑌 ) ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) ↔ 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ∈ ( 𝑋 Faith 𝑌 ) ) |
| 39 |
37 38
|
sylib |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ∈ ( 𝑋 Faith 𝑌 ) ) |
| 40 |
36 39
|
elind |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ) |
| 41 |
|
vex |
⊢ 𝑓 ∈ V |
| 42 |
3
|
fvexi |
⊢ 𝑅 ∈ V |
| 43 |
42 42
|
mpoex |
⊢ ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) ∈ V |
| 44 |
41 43
|
op1st |
⊢ ( 1st ‘ 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ) = 𝑓 |
| 45 |
|
f1oeq1 |
⊢ ( ( 1st ‘ 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ) = 𝑓 → ( ( 1st ‘ 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ) : 𝑅 –1-1-onto→ 𝑆 ↔ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) |
| 46 |
44 45
|
ax-mp |
⊢ ( ( 1st ‘ 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ) : 𝑅 –1-1-onto→ 𝑆 ↔ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) |
| 47 |
25 46
|
sylibr |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → ( 1st ‘ 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ) : 𝑅 –1-1-onto→ 𝑆 ) |
| 48 |
40 47
|
jca |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → ( 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ ( 1st ‘ 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ) : 𝑅 –1-1-onto→ 𝑆 ) ) |
| 49 |
1 2 3 4 7 8 9 12
|
catciso |
⊢ ( 𝜑 → ( 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ↔ ( 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ ( 1st ‘ 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ) : 𝑅 –1-1-onto→ 𝑆 ) ) ) |
| 50 |
49
|
biimpar |
⊢ ( ( 𝜑 ∧ ( 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ ( 1st ‘ 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ) : 𝑅 –1-1-onto→ 𝑆 ) ) → 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) |
| 51 |
48 50
|
syldan |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) |
| 52 |
|
eleq1 |
⊢ ( 𝑎 = 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 → ( 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ↔ 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) ) |
| 53 |
17 51 52
|
spcedv |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → ∃ 𝑎 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) |
| 54 |
53
|
ex |
⊢ ( 𝜑 → ( ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) → ∃ 𝑎 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) ) |
| 55 |
54
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑓 ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) → ∃ 𝑎 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) ) |
| 56 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → ( 1st ‘ 𝑎 ) ∈ V ) |
| 57 |
|
relfull |
⊢ Rel ( 𝑋 Full 𝑌 ) |
| 58 |
1 2 3 4 7 8 9 12
|
catciso |
⊢ ( 𝜑 → ( 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ↔ ( 𝑎 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ ( 1st ‘ 𝑎 ) : 𝑅 –1-1-onto→ 𝑆 ) ) ) |
| 59 |
58
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → ( 𝑎 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ ( 1st ‘ 𝑎 ) : 𝑅 –1-1-onto→ 𝑆 ) ) |
| 60 |
59
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → 𝑎 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ) |
| 61 |
60
|
elin1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → 𝑎 ∈ ( 𝑋 Full 𝑌 ) ) |
| 62 |
|
1st2ndbr |
⊢ ( ( Rel ( 𝑋 Full 𝑌 ) ∧ 𝑎 ∈ ( 𝑋 Full 𝑌 ) ) → ( 1st ‘ 𝑎 ) ( 𝑋 Full 𝑌 ) ( 2nd ‘ 𝑎 ) ) |
| 63 |
57 61 62
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → ( 1st ‘ 𝑎 ) ( 𝑋 Full 𝑌 ) ( 2nd ‘ 𝑎 ) ) |
| 64 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → 𝑌 ∈ ThinCat ) |
| 65 |
|
fullfunc |
⊢ ( 𝑋 Full 𝑌 ) ⊆ ( 𝑋 Func 𝑌 ) |
| 66 |
65
|
ssbri |
⊢ ( ( 1st ‘ 𝑎 ) ( 𝑋 Full 𝑌 ) ( 2nd ‘ 𝑎 ) → ( 1st ‘ 𝑎 ) ( 𝑋 Func 𝑌 ) ( 2nd ‘ 𝑎 ) ) |
| 67 |
63 66
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → ( 1st ‘ 𝑎 ) ( 𝑋 Func 𝑌 ) ( 2nd ‘ 𝑎 ) ) |
| 68 |
3 6 5 64 67
|
fullthinc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → ( ( 1st ‘ 𝑎 ) ( 𝑋 Full 𝑌 ) ( 2nd ‘ 𝑎 ) ↔ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) 𝐽 ( ( 1st ‘ 𝑎 ) ‘ 𝑦 ) ) = ∅ ) ) ) |
| 69 |
63 68
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) 𝐽 ( ( 1st ‘ 𝑎 ) ‘ 𝑦 ) ) = ∅ ) ) |
| 70 |
67
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( 1st ‘ 𝑎 ) ( 𝑋 Func 𝑌 ) ( 2nd ‘ 𝑎 ) ) |
| 71 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → 𝑥 ∈ 𝑅 ) |
| 72 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → 𝑦 ∈ 𝑅 ) |
| 73 |
3 5 6 70 71 72
|
funcf2 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( 𝑥 ( 2nd ‘ 𝑎 ) 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) 𝐽 ( ( 1st ‘ 𝑎 ) ‘ 𝑦 ) ) ) |
| 74 |
73
|
f002 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( ( ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) 𝐽 ( ( 1st ‘ 𝑎 ) ‘ 𝑦 ) ) = ∅ → ( 𝑥 𝐻 𝑦 ) = ∅ ) ) |
| 75 |
74
|
ralrimivva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) 𝐽 ( ( 1st ‘ 𝑎 ) ‘ 𝑦 ) ) = ∅ → ( 𝑥 𝐻 𝑦 ) = ∅ ) ) |
| 76 |
|
2ralbiim |
⊢ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) 𝐽 ( ( 1st ‘ 𝑎 ) ‘ 𝑦 ) ) = ∅ ) ↔ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) 𝐽 ( ( 1st ‘ 𝑎 ) ‘ 𝑦 ) ) = ∅ ) ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) 𝐽 ( ( 1st ‘ 𝑎 ) ‘ 𝑦 ) ) = ∅ → ( 𝑥 𝐻 𝑦 ) = ∅ ) ) ) |
| 77 |
69 75 76
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) 𝐽 ( ( 1st ‘ 𝑎 ) ‘ 𝑦 ) ) = ∅ ) ) |
| 78 |
59
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → ( 1st ‘ 𝑎 ) : 𝑅 –1-1-onto→ 𝑆 ) |
| 79 |
77 78
|
jca |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) 𝐽 ( ( 1st ‘ 𝑎 ) ‘ 𝑦 ) ) = ∅ ) ∧ ( 1st ‘ 𝑎 ) : 𝑅 –1-1-onto→ 𝑆 ) ) |
| 80 |
|
fveq1 |
⊢ ( 𝑓 = ( 1st ‘ 𝑎 ) → ( 𝑓 ‘ 𝑥 ) = ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) ) |
| 81 |
|
fveq1 |
⊢ ( 𝑓 = ( 1st ‘ 𝑎 ) → ( 𝑓 ‘ 𝑦 ) = ( ( 1st ‘ 𝑎 ) ‘ 𝑦 ) ) |
| 82 |
80 81
|
oveq12d |
⊢ ( 𝑓 = ( 1st ‘ 𝑎 ) → ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ( ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) 𝐽 ( ( 1st ‘ 𝑎 ) ‘ 𝑦 ) ) ) |
| 83 |
82
|
eqeq1d |
⊢ ( 𝑓 = ( 1st ‘ 𝑎 ) → ( ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ↔ ( ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) 𝐽 ( ( 1st ‘ 𝑎 ) ‘ 𝑦 ) ) = ∅ ) ) |
| 84 |
83
|
bibi2d |
⊢ ( 𝑓 = ( 1st ‘ 𝑎 ) → ( ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ↔ ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) 𝐽 ( ( 1st ‘ 𝑎 ) ‘ 𝑦 ) ) = ∅ ) ) ) |
| 85 |
84
|
2ralbidv |
⊢ ( 𝑓 = ( 1st ‘ 𝑎 ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ↔ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) 𝐽 ( ( 1st ‘ 𝑎 ) ‘ 𝑦 ) ) = ∅ ) ) ) |
| 86 |
|
f1oeq1 |
⊢ ( 𝑓 = ( 1st ‘ 𝑎 ) → ( 𝑓 : 𝑅 –1-1-onto→ 𝑆 ↔ ( 1st ‘ 𝑎 ) : 𝑅 –1-1-onto→ 𝑆 ) ) |
| 87 |
85 86
|
anbi12d |
⊢ ( 𝑓 = ( 1st ‘ 𝑎 ) → ( ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ↔ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) 𝐽 ( ( 1st ‘ 𝑎 ) ‘ 𝑦 ) ) = ∅ ) ∧ ( 1st ‘ 𝑎 ) : 𝑅 –1-1-onto→ 𝑆 ) ) ) |
| 88 |
56 79 87
|
spcedv |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → ∃ 𝑓 ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) |
| 89 |
88
|
ex |
⊢ ( 𝜑 → ( 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) → ∃ 𝑓 ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) ) |
| 90 |
89
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑎 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) → ∃ 𝑓 ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) ) |
| 91 |
55 90
|
impbid |
⊢ ( 𝜑 → ( ∃ 𝑓 ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ↔ ∃ 𝑎 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) ) |
| 92 |
15 91
|
bitr4d |
⊢ ( 𝜑 → ( 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ↔ ∃ 𝑓 ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) ) |