| Step |
Hyp |
Ref |
Expression |
| 1 |
|
thincciso.c |
|
| 2 |
|
thincciso.b |
|
| 3 |
|
thincciso.r |
|
| 4 |
|
thincciso.s |
|
| 5 |
|
thincciso.h |
|
| 6 |
|
thincciso.j |
|
| 7 |
|
thincciso.u |
|
| 8 |
|
thincciso.x |
|
| 9 |
|
thincciso.y |
|
| 10 |
|
thincciso.xt |
|
| 11 |
|
thincciso.yt |
|
| 12 |
|
eqid |
|
| 13 |
1
|
catccat |
|
| 14 |
7 13
|
syl |
|
| 15 |
12 2 14 8 9
|
cic |
|
| 16 |
|
opex |
|
| 17 |
16
|
a1i |
|
| 18 |
|
biimp |
|
| 19 |
18
|
2ralimi |
|
| 20 |
19
|
ad2antrl |
|
| 21 |
11
|
adantr |
|
| 22 |
|
eqid |
|
| 23 |
10
|
adantr |
|
| 24 |
23
|
thinccd |
|
| 25 |
|
simprr |
|
| 26 |
|
f1of |
|
| 27 |
25 26
|
syl |
|
| 28 |
|
biimpr |
|
| 29 |
28
|
2ralimi |
|
| 30 |
29
|
ad2antrl |
|
| 31 |
3 4 5 6 24 21 27 22 30
|
functhinc |
|
| 32 |
22 31
|
mpbiri |
|
| 33 |
3 6 5 21 32
|
fullthinc |
|
| 34 |
20 33
|
mpbird |
|
| 35 |
|
df-br |
|
| 36 |
34 35
|
sylib |
|
| 37 |
23 32
|
thincfth |
|
| 38 |
|
df-br |
|
| 39 |
37 38
|
sylib |
|
| 40 |
36 39
|
elind |
|
| 41 |
|
vex |
|
| 42 |
3
|
fvexi |
|
| 43 |
42 42
|
mpoex |
|
| 44 |
41 43
|
op1st |
|
| 45 |
|
f1oeq1 |
|
| 46 |
44 45
|
ax-mp |
|
| 47 |
25 46
|
sylibr |
|
| 48 |
40 47
|
jca |
|
| 49 |
1 2 3 4 7 8 9 12
|
catciso |
|
| 50 |
49
|
biimpar |
|
| 51 |
48 50
|
syldan |
|
| 52 |
|
eleq1 |
|
| 53 |
17 51 52
|
spcedv |
|
| 54 |
53
|
ex |
|
| 55 |
54
|
exlimdv |
|
| 56 |
|
fvexd |
|
| 57 |
|
relfull |
|
| 58 |
1 2 3 4 7 8 9 12
|
catciso |
|
| 59 |
58
|
biimpa |
|
| 60 |
59
|
simpld |
|
| 61 |
60
|
elin1d |
|
| 62 |
|
1st2ndbr |
|
| 63 |
57 61 62
|
sylancr |
|
| 64 |
11
|
adantr |
|
| 65 |
|
fullfunc |
|
| 66 |
65
|
ssbri |
|
| 67 |
63 66
|
syl |
|
| 68 |
3 6 5 64 67
|
fullthinc |
|
| 69 |
63 68
|
mpbid |
|
| 70 |
67
|
adantr |
|
| 71 |
|
simprl |
|
| 72 |
|
simprr |
|
| 73 |
3 5 6 70 71 72
|
funcf2 |
|
| 74 |
73
|
f002 |
|
| 75 |
74
|
ralrimivva |
|
| 76 |
|
2ralbiim |
|
| 77 |
69 75 76
|
sylanbrc |
|
| 78 |
59
|
simprd |
|
| 79 |
77 78
|
jca |
|
| 80 |
|
fveq1 |
|
| 81 |
|
fveq1 |
|
| 82 |
80 81
|
oveq12d |
|
| 83 |
82
|
eqeq1d |
|
| 84 |
83
|
bibi2d |
|
| 85 |
84
|
2ralbidv |
|
| 86 |
|
f1oeq1 |
|
| 87 |
85 86
|
anbi12d |
|
| 88 |
56 79 87
|
spcedv |
|
| 89 |
88
|
ex |
|
| 90 |
89
|
exlimdv |
|
| 91 |
55 90
|
impbid |
|
| 92 |
15 91
|
bitr4d |
|