| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tmsxps.p |
|- P = ( dist ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) |
| 2 |
|
tmsxps.1 |
|- ( ph -> M e. ( *Met ` X ) ) |
| 3 |
|
tmsxps.2 |
|- ( ph -> N e. ( *Met ` Y ) ) |
| 4 |
|
tmsxpsval.a |
|- ( ph -> A e. X ) |
| 5 |
|
tmsxpsval.b |
|- ( ph -> B e. Y ) |
| 6 |
|
tmsxpsval.c |
|- ( ph -> C e. X ) |
| 7 |
|
tmsxpsval.d |
|- ( ph -> D e. Y ) |
| 8 |
1 2 3 4 5 6 7
|
tmsxpsval |
|- ( ph -> ( <. A , B >. P <. C , D >. ) = sup ( { ( A M C ) , ( B N D ) } , RR* , < ) ) |
| 9 |
|
xrltso |
|- < Or RR* |
| 10 |
|
xmetcl |
|- ( ( M e. ( *Met ` X ) /\ A e. X /\ C e. X ) -> ( A M C ) e. RR* ) |
| 11 |
2 4 6 10
|
syl3anc |
|- ( ph -> ( A M C ) e. RR* ) |
| 12 |
|
xmetcl |
|- ( ( N e. ( *Met ` Y ) /\ B e. Y /\ D e. Y ) -> ( B N D ) e. RR* ) |
| 13 |
3 5 7 12
|
syl3anc |
|- ( ph -> ( B N D ) e. RR* ) |
| 14 |
|
suppr |
|- ( ( < Or RR* /\ ( A M C ) e. RR* /\ ( B N D ) e. RR* ) -> sup ( { ( A M C ) , ( B N D ) } , RR* , < ) = if ( ( B N D ) < ( A M C ) , ( A M C ) , ( B N D ) ) ) |
| 15 |
9 11 13 14
|
mp3an2i |
|- ( ph -> sup ( { ( A M C ) , ( B N D ) } , RR* , < ) = if ( ( B N D ) < ( A M C ) , ( A M C ) , ( B N D ) ) ) |
| 16 |
|
xrltnle |
|- ( ( ( B N D ) e. RR* /\ ( A M C ) e. RR* ) -> ( ( B N D ) < ( A M C ) <-> -. ( A M C ) <_ ( B N D ) ) ) |
| 17 |
13 11 16
|
syl2anc |
|- ( ph -> ( ( B N D ) < ( A M C ) <-> -. ( A M C ) <_ ( B N D ) ) ) |
| 18 |
17
|
ifbid |
|- ( ph -> if ( ( B N D ) < ( A M C ) , ( A M C ) , ( B N D ) ) = if ( -. ( A M C ) <_ ( B N D ) , ( A M C ) , ( B N D ) ) ) |
| 19 |
|
ifnot |
|- if ( -. ( A M C ) <_ ( B N D ) , ( A M C ) , ( B N D ) ) = if ( ( A M C ) <_ ( B N D ) , ( B N D ) , ( A M C ) ) |
| 20 |
18 19
|
eqtrdi |
|- ( ph -> if ( ( B N D ) < ( A M C ) , ( A M C ) , ( B N D ) ) = if ( ( A M C ) <_ ( B N D ) , ( B N D ) , ( A M C ) ) ) |
| 21 |
8 15 20
|
3eqtrd |
|- ( ph -> ( <. A , B >. P <. C , D >. ) = if ( ( A M C ) <_ ( B N D ) , ( B N D ) , ( A M C ) ) ) |