| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tocycval.1 |  |-  C = ( toCyc ` D ) | 
						
							| 2 |  | tocycfv.d |  |-  ( ph -> D e. V ) | 
						
							| 3 |  | tocycfv.w |  |-  ( ph -> W e. Word D ) | 
						
							| 4 |  | tocycfv.1 |  |-  ( ph -> W : dom W -1-1-> D ) | 
						
							| 5 | 1 2 3 4 | tocycfv |  |-  ( ph -> ( C ` W ) = ( ( _I |` ( D \ ran W ) ) u. ( ( W cyclShift 1 ) o. `' W ) ) ) | 
						
							| 6 | 5 | reseq1d |  |-  ( ph -> ( ( C ` W ) |` ( D \ ran W ) ) = ( ( ( _I |` ( D \ ran W ) ) u. ( ( W cyclShift 1 ) o. `' W ) ) |` ( D \ ran W ) ) ) | 
						
							| 7 |  | fnresi |  |-  ( _I |` ( D \ ran W ) ) Fn ( D \ ran W ) | 
						
							| 8 | 7 | a1i |  |-  ( ph -> ( _I |` ( D \ ran W ) ) Fn ( D \ ran W ) ) | 
						
							| 9 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 10 |  | cshwfn |  |-  ( ( W e. Word D /\ 1 e. ZZ ) -> ( W cyclShift 1 ) Fn ( 0 ..^ ( # ` W ) ) ) | 
						
							| 11 | 3 9 10 | syl2anc |  |-  ( ph -> ( W cyclShift 1 ) Fn ( 0 ..^ ( # ` W ) ) ) | 
						
							| 12 |  | f1f1orn |  |-  ( W : dom W -1-1-> D -> W : dom W -1-1-onto-> ran W ) | 
						
							| 13 |  | f1ocnv |  |-  ( W : dom W -1-1-onto-> ran W -> `' W : ran W -1-1-onto-> dom W ) | 
						
							| 14 |  | f1ofn |  |-  ( `' W : ran W -1-1-onto-> dom W -> `' W Fn ran W ) | 
						
							| 15 | 4 12 13 14 | 4syl |  |-  ( ph -> `' W Fn ran W ) | 
						
							| 16 |  | dfdm4 |  |-  dom W = ran `' W | 
						
							| 17 |  | wrddm |  |-  ( W e. Word D -> dom W = ( 0 ..^ ( # ` W ) ) ) | 
						
							| 18 | 3 17 | syl |  |-  ( ph -> dom W = ( 0 ..^ ( # ` W ) ) ) | 
						
							| 19 |  | ssidd |  |-  ( ph -> ( 0 ..^ ( # ` W ) ) C_ ( 0 ..^ ( # ` W ) ) ) | 
						
							| 20 | 18 19 | eqsstrd |  |-  ( ph -> dom W C_ ( 0 ..^ ( # ` W ) ) ) | 
						
							| 21 | 16 20 | eqsstrrid |  |-  ( ph -> ran `' W C_ ( 0 ..^ ( # ` W ) ) ) | 
						
							| 22 |  | fnco |  |-  ( ( ( W cyclShift 1 ) Fn ( 0 ..^ ( # ` W ) ) /\ `' W Fn ran W /\ ran `' W C_ ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift 1 ) o. `' W ) Fn ran W ) | 
						
							| 23 | 11 15 21 22 | syl3anc |  |-  ( ph -> ( ( W cyclShift 1 ) o. `' W ) Fn ran W ) | 
						
							| 24 |  | disjdifr |  |-  ( ( D \ ran W ) i^i ran W ) = (/) | 
						
							| 25 | 24 | a1i |  |-  ( ph -> ( ( D \ ran W ) i^i ran W ) = (/) ) | 
						
							| 26 |  | fnunres1 |  |-  ( ( ( _I |` ( D \ ran W ) ) Fn ( D \ ran W ) /\ ( ( W cyclShift 1 ) o. `' W ) Fn ran W /\ ( ( D \ ran W ) i^i ran W ) = (/) ) -> ( ( ( _I |` ( D \ ran W ) ) u. ( ( W cyclShift 1 ) o. `' W ) ) |` ( D \ ran W ) ) = ( _I |` ( D \ ran W ) ) ) | 
						
							| 27 | 8 23 25 26 | syl3anc |  |-  ( ph -> ( ( ( _I |` ( D \ ran W ) ) u. ( ( W cyclShift 1 ) o. `' W ) ) |` ( D \ ran W ) ) = ( _I |` ( D \ ran W ) ) ) | 
						
							| 28 | 6 27 | eqtrd |  |-  ( ph -> ( ( C ` W ) |` ( D \ ran W ) ) = ( _I |` ( D \ ran W ) ) ) |