Step |
Hyp |
Ref |
Expression |
1 |
|
trclexi.1 |
|- A e. V |
2 |
|
ssun1 |
|- A C_ ( A u. ( dom A X. ran A ) ) |
3 |
|
coundir |
|- ( ( A u. ( dom A X. ran A ) ) o. ( A u. ( dom A X. ran A ) ) ) = ( ( A o. ( A u. ( dom A X. ran A ) ) ) u. ( ( dom A X. ran A ) o. ( A u. ( dom A X. ran A ) ) ) ) |
4 |
|
coundi |
|- ( A o. ( A u. ( dom A X. ran A ) ) ) = ( ( A o. A ) u. ( A o. ( dom A X. ran A ) ) ) |
5 |
|
cossxp |
|- ( A o. A ) C_ ( dom A X. ran A ) |
6 |
|
cossxp |
|- ( A o. ( dom A X. ran A ) ) C_ ( dom ( dom A X. ran A ) X. ran A ) |
7 |
|
dmxpss |
|- dom ( dom A X. ran A ) C_ dom A |
8 |
|
xpss1 |
|- ( dom ( dom A X. ran A ) C_ dom A -> ( dom ( dom A X. ran A ) X. ran A ) C_ ( dom A X. ran A ) ) |
9 |
7 8
|
ax-mp |
|- ( dom ( dom A X. ran A ) X. ran A ) C_ ( dom A X. ran A ) |
10 |
6 9
|
sstri |
|- ( A o. ( dom A X. ran A ) ) C_ ( dom A X. ran A ) |
11 |
5 10
|
unssi |
|- ( ( A o. A ) u. ( A o. ( dom A X. ran A ) ) ) C_ ( dom A X. ran A ) |
12 |
4 11
|
eqsstri |
|- ( A o. ( A u. ( dom A X. ran A ) ) ) C_ ( dom A X. ran A ) |
13 |
|
coundi |
|- ( ( dom A X. ran A ) o. ( A u. ( dom A X. ran A ) ) ) = ( ( ( dom A X. ran A ) o. A ) u. ( ( dom A X. ran A ) o. ( dom A X. ran A ) ) ) |
14 |
|
cossxp |
|- ( ( dom A X. ran A ) o. A ) C_ ( dom A X. ran ( dom A X. ran A ) ) |
15 |
|
rnxpss |
|- ran ( dom A X. ran A ) C_ ran A |
16 |
|
xpss2 |
|- ( ran ( dom A X. ran A ) C_ ran A -> ( dom A X. ran ( dom A X. ran A ) ) C_ ( dom A X. ran A ) ) |
17 |
15 16
|
ax-mp |
|- ( dom A X. ran ( dom A X. ran A ) ) C_ ( dom A X. ran A ) |
18 |
14 17
|
sstri |
|- ( ( dom A X. ran A ) o. A ) C_ ( dom A X. ran A ) |
19 |
|
xptrrel |
|- ( ( dom A X. ran A ) o. ( dom A X. ran A ) ) C_ ( dom A X. ran A ) |
20 |
18 19
|
unssi |
|- ( ( ( dom A X. ran A ) o. A ) u. ( ( dom A X. ran A ) o. ( dom A X. ran A ) ) ) C_ ( dom A X. ran A ) |
21 |
13 20
|
eqsstri |
|- ( ( dom A X. ran A ) o. ( A u. ( dom A X. ran A ) ) ) C_ ( dom A X. ran A ) |
22 |
12 21
|
unssi |
|- ( ( A o. ( A u. ( dom A X. ran A ) ) ) u. ( ( dom A X. ran A ) o. ( A u. ( dom A X. ran A ) ) ) ) C_ ( dom A X. ran A ) |
23 |
3 22
|
eqsstri |
|- ( ( A u. ( dom A X. ran A ) ) o. ( A u. ( dom A X. ran A ) ) ) C_ ( dom A X. ran A ) |
24 |
|
ssun2 |
|- ( dom A X. ran A ) C_ ( A u. ( dom A X. ran A ) ) |
25 |
23 24
|
sstri |
|- ( ( A u. ( dom A X. ran A ) ) o. ( A u. ( dom A X. ran A ) ) ) C_ ( A u. ( dom A X. ran A ) ) |
26 |
1
|
elexi |
|- A e. _V |
27 |
26
|
dmex |
|- dom A e. _V |
28 |
26
|
rnex |
|- ran A e. _V |
29 |
27 28
|
xpex |
|- ( dom A X. ran A ) e. _V |
30 |
26 29
|
unex |
|- ( A u. ( dom A X. ran A ) ) e. _V |
31 |
|
trcleq2lem |
|- ( x = ( A u. ( dom A X. ran A ) ) -> ( ( A C_ x /\ ( x o. x ) C_ x ) <-> ( A C_ ( A u. ( dom A X. ran A ) ) /\ ( ( A u. ( dom A X. ran A ) ) o. ( A u. ( dom A X. ran A ) ) ) C_ ( A u. ( dom A X. ran A ) ) ) ) ) |
32 |
30 31
|
spcev |
|- ( ( A C_ ( A u. ( dom A X. ran A ) ) /\ ( ( A u. ( dom A X. ran A ) ) o. ( A u. ( dom A X. ran A ) ) ) C_ ( A u. ( dom A X. ran A ) ) ) -> E. x ( A C_ x /\ ( x o. x ) C_ x ) ) |
33 |
|
intexab |
|- ( E. x ( A C_ x /\ ( x o. x ) C_ x ) <-> |^| { x | ( A C_ x /\ ( x o. x ) C_ x ) } e. _V ) |
34 |
32 33
|
sylib |
|- ( ( A C_ ( A u. ( dom A X. ran A ) ) /\ ( ( A u. ( dom A X. ran A ) ) o. ( A u. ( dom A X. ran A ) ) ) C_ ( A u. ( dom A X. ran A ) ) ) -> |^| { x | ( A C_ x /\ ( x o. x ) C_ x ) } e. _V ) |
35 |
2 25 34
|
mp2an |
|- |^| { x | ( A C_ x /\ ( x o. x ) C_ x ) } e. _V |