| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trclexi.1 |
|- A e. V |
| 2 |
|
ssun1 |
|- A C_ ( A u. ( dom A X. ran A ) ) |
| 3 |
|
coundir |
|- ( ( A u. ( dom A X. ran A ) ) o. ( A u. ( dom A X. ran A ) ) ) = ( ( A o. ( A u. ( dom A X. ran A ) ) ) u. ( ( dom A X. ran A ) o. ( A u. ( dom A X. ran A ) ) ) ) |
| 4 |
|
coundi |
|- ( A o. ( A u. ( dom A X. ran A ) ) ) = ( ( A o. A ) u. ( A o. ( dom A X. ran A ) ) ) |
| 5 |
|
cossxp |
|- ( A o. A ) C_ ( dom A X. ran A ) |
| 6 |
|
cossxp |
|- ( A o. ( dom A X. ran A ) ) C_ ( dom ( dom A X. ran A ) X. ran A ) |
| 7 |
|
dmxpss |
|- dom ( dom A X. ran A ) C_ dom A |
| 8 |
|
xpss1 |
|- ( dom ( dom A X. ran A ) C_ dom A -> ( dom ( dom A X. ran A ) X. ran A ) C_ ( dom A X. ran A ) ) |
| 9 |
7 8
|
ax-mp |
|- ( dom ( dom A X. ran A ) X. ran A ) C_ ( dom A X. ran A ) |
| 10 |
6 9
|
sstri |
|- ( A o. ( dom A X. ran A ) ) C_ ( dom A X. ran A ) |
| 11 |
5 10
|
unssi |
|- ( ( A o. A ) u. ( A o. ( dom A X. ran A ) ) ) C_ ( dom A X. ran A ) |
| 12 |
4 11
|
eqsstri |
|- ( A o. ( A u. ( dom A X. ran A ) ) ) C_ ( dom A X. ran A ) |
| 13 |
|
coundi |
|- ( ( dom A X. ran A ) o. ( A u. ( dom A X. ran A ) ) ) = ( ( ( dom A X. ran A ) o. A ) u. ( ( dom A X. ran A ) o. ( dom A X. ran A ) ) ) |
| 14 |
|
cossxp |
|- ( ( dom A X. ran A ) o. A ) C_ ( dom A X. ran ( dom A X. ran A ) ) |
| 15 |
|
rnxpss |
|- ran ( dom A X. ran A ) C_ ran A |
| 16 |
|
xpss2 |
|- ( ran ( dom A X. ran A ) C_ ran A -> ( dom A X. ran ( dom A X. ran A ) ) C_ ( dom A X. ran A ) ) |
| 17 |
15 16
|
ax-mp |
|- ( dom A X. ran ( dom A X. ran A ) ) C_ ( dom A X. ran A ) |
| 18 |
14 17
|
sstri |
|- ( ( dom A X. ran A ) o. A ) C_ ( dom A X. ran A ) |
| 19 |
|
xptrrel |
|- ( ( dom A X. ran A ) o. ( dom A X. ran A ) ) C_ ( dom A X. ran A ) |
| 20 |
18 19
|
unssi |
|- ( ( ( dom A X. ran A ) o. A ) u. ( ( dom A X. ran A ) o. ( dom A X. ran A ) ) ) C_ ( dom A X. ran A ) |
| 21 |
13 20
|
eqsstri |
|- ( ( dom A X. ran A ) o. ( A u. ( dom A X. ran A ) ) ) C_ ( dom A X. ran A ) |
| 22 |
12 21
|
unssi |
|- ( ( A o. ( A u. ( dom A X. ran A ) ) ) u. ( ( dom A X. ran A ) o. ( A u. ( dom A X. ran A ) ) ) ) C_ ( dom A X. ran A ) |
| 23 |
3 22
|
eqsstri |
|- ( ( A u. ( dom A X. ran A ) ) o. ( A u. ( dom A X. ran A ) ) ) C_ ( dom A X. ran A ) |
| 24 |
|
ssun2 |
|- ( dom A X. ran A ) C_ ( A u. ( dom A X. ran A ) ) |
| 25 |
23 24
|
sstri |
|- ( ( A u. ( dom A X. ran A ) ) o. ( A u. ( dom A X. ran A ) ) ) C_ ( A u. ( dom A X. ran A ) ) |
| 26 |
1
|
elexi |
|- A e. _V |
| 27 |
26
|
dmex |
|- dom A e. _V |
| 28 |
26
|
rnex |
|- ran A e. _V |
| 29 |
27 28
|
xpex |
|- ( dom A X. ran A ) e. _V |
| 30 |
26 29
|
unex |
|- ( A u. ( dom A X. ran A ) ) e. _V |
| 31 |
|
trcleq2lem |
|- ( x = ( A u. ( dom A X. ran A ) ) -> ( ( A C_ x /\ ( x o. x ) C_ x ) <-> ( A C_ ( A u. ( dom A X. ran A ) ) /\ ( ( A u. ( dom A X. ran A ) ) o. ( A u. ( dom A X. ran A ) ) ) C_ ( A u. ( dom A X. ran A ) ) ) ) ) |
| 32 |
30 31
|
spcev |
|- ( ( A C_ ( A u. ( dom A X. ran A ) ) /\ ( ( A u. ( dom A X. ran A ) ) o. ( A u. ( dom A X. ran A ) ) ) C_ ( A u. ( dom A X. ran A ) ) ) -> E. x ( A C_ x /\ ( x o. x ) C_ x ) ) |
| 33 |
|
intexab |
|- ( E. x ( A C_ x /\ ( x o. x ) C_ x ) <-> |^| { x | ( A C_ x /\ ( x o. x ) C_ x ) } e. _V ) |
| 34 |
32 33
|
sylib |
|- ( ( A C_ ( A u. ( dom A X. ran A ) ) /\ ( ( A u. ( dom A X. ran A ) ) o. ( A u. ( dom A X. ran A ) ) ) C_ ( A u. ( dom A X. ran A ) ) ) -> |^| { x | ( A C_ x /\ ( x o. x ) C_ x ) } e. _V ) |
| 35 |
2 25 34
|
mp2an |
|- |^| { x | ( A C_ x /\ ( x o. x ) C_ x ) } e. _V |