| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trclubNEW.rex |
|- ( ph -> R e. _V ) |
| 2 |
|
trclubNEW.rel |
|- ( ph -> Rel R ) |
| 3 |
1
|
trclubgNEW |
|- ( ph -> |^| { x | ( R C_ x /\ ( x o. x ) C_ x ) } C_ ( R u. ( dom R X. ran R ) ) ) |
| 4 |
|
relssdmrn |
|- ( Rel R -> R C_ ( dom R X. ran R ) ) |
| 5 |
2 4
|
syl |
|- ( ph -> R C_ ( dom R X. ran R ) ) |
| 6 |
|
ssequn1 |
|- ( R C_ ( dom R X. ran R ) <-> ( R u. ( dom R X. ran R ) ) = ( dom R X. ran R ) ) |
| 7 |
5 6
|
sylib |
|- ( ph -> ( R u. ( dom R X. ran R ) ) = ( dom R X. ran R ) ) |
| 8 |
3 7
|
sseqtrd |
|- ( ph -> |^| { x | ( R C_ x /\ ( x o. x ) C_ x ) } C_ ( dom R X. ran R ) ) |