Metamath Proof Explorer


Theorem trclubNEW

Description: If a relation exists then the transitive closure has an upper bound. (Contributed by RP, 24-Jul-2020)

Ref Expression
Hypotheses trclubNEW.rex
|- ( ph -> R e. _V )
trclubNEW.rel
|- ( ph -> Rel R )
Assertion trclubNEW
|- ( ph -> |^| { x | ( R C_ x /\ ( x o. x ) C_ x ) } C_ ( dom R X. ran R ) )

Proof

Step Hyp Ref Expression
1 trclubNEW.rex
 |-  ( ph -> R e. _V )
2 trclubNEW.rel
 |-  ( ph -> Rel R )
3 1 trclubgNEW
 |-  ( ph -> |^| { x | ( R C_ x /\ ( x o. x ) C_ x ) } C_ ( R u. ( dom R X. ran R ) ) )
4 relssdmrn
 |-  ( Rel R -> R C_ ( dom R X. ran R ) )
5 2 4 syl
 |-  ( ph -> R C_ ( dom R X. ran R ) )
6 ssequn1
 |-  ( R C_ ( dom R X. ran R ) <-> ( R u. ( dom R X. ran R ) ) = ( dom R X. ran R ) )
7 5 6 sylib
 |-  ( ph -> ( R u. ( dom R X. ran R ) ) = ( dom R X. ran R ) )
8 3 7 sseqtrd
 |-  ( ph -> |^| { x | ( R C_ x /\ ( x o. x ) C_ x ) } C_ ( dom R X. ran R ) )