| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trclubgNEW.rex |
|- ( ph -> R e. _V ) |
| 2 |
1
|
dmexd |
|- ( ph -> dom R e. _V ) |
| 3 |
|
rnexg |
|- ( R e. _V -> ran R e. _V ) |
| 4 |
1 3
|
syl |
|- ( ph -> ran R e. _V ) |
| 5 |
2 4
|
xpexd |
|- ( ph -> ( dom R X. ran R ) e. _V ) |
| 6 |
1 5
|
unexd |
|- ( ph -> ( R u. ( dom R X. ran R ) ) e. _V ) |
| 7 |
|
id |
|- ( x = ( R u. ( dom R X. ran R ) ) -> x = ( R u. ( dom R X. ran R ) ) ) |
| 8 |
7 7
|
coeq12d |
|- ( x = ( R u. ( dom R X. ran R ) ) -> ( x o. x ) = ( ( R u. ( dom R X. ran R ) ) o. ( R u. ( dom R X. ran R ) ) ) ) |
| 9 |
8 7
|
sseq12d |
|- ( x = ( R u. ( dom R X. ran R ) ) -> ( ( x o. x ) C_ x <-> ( ( R u. ( dom R X. ran R ) ) o. ( R u. ( dom R X. ran R ) ) ) C_ ( R u. ( dom R X. ran R ) ) ) ) |
| 10 |
|
ssun1 |
|- R C_ ( R u. ( dom R X. ran R ) ) |
| 11 |
10
|
a1i |
|- ( ph -> R C_ ( R u. ( dom R X. ran R ) ) ) |
| 12 |
|
cnvssrndm |
|- `' R C_ ( ran R X. dom R ) |
| 13 |
|
coundi |
|- ( ( R u. ( dom R X. ran R ) ) o. ( R u. ( dom R X. ran R ) ) ) = ( ( ( R u. ( dom R X. ran R ) ) o. R ) u. ( ( R u. ( dom R X. ran R ) ) o. ( dom R X. ran R ) ) ) |
| 14 |
|
cnvss |
|- ( `' R C_ ( ran R X. dom R ) -> `' `' R C_ `' ( ran R X. dom R ) ) |
| 15 |
|
coss2 |
|- ( `' `' R C_ `' ( ran R X. dom R ) -> ( ( R u. ( dom R X. ran R ) ) o. `' `' R ) C_ ( ( R u. ( dom R X. ran R ) ) o. `' ( ran R X. dom R ) ) ) |
| 16 |
14 15
|
syl |
|- ( `' R C_ ( ran R X. dom R ) -> ( ( R u. ( dom R X. ran R ) ) o. `' `' R ) C_ ( ( R u. ( dom R X. ran R ) ) o. `' ( ran R X. dom R ) ) ) |
| 17 |
|
cocnvcnv2 |
|- ( ( R u. ( dom R X. ran R ) ) o. `' `' R ) = ( ( R u. ( dom R X. ran R ) ) o. R ) |
| 18 |
|
cnvxp |
|- `' ( ran R X. dom R ) = ( dom R X. ran R ) |
| 19 |
18
|
coeq2i |
|- ( ( R u. ( dom R X. ran R ) ) o. `' ( ran R X. dom R ) ) = ( ( R u. ( dom R X. ran R ) ) o. ( dom R X. ran R ) ) |
| 20 |
16 17 19
|
3sstr3g |
|- ( `' R C_ ( ran R X. dom R ) -> ( ( R u. ( dom R X. ran R ) ) o. R ) C_ ( ( R u. ( dom R X. ran R ) ) o. ( dom R X. ran R ) ) ) |
| 21 |
|
ssequn1 |
|- ( ( ( R u. ( dom R X. ran R ) ) o. R ) C_ ( ( R u. ( dom R X. ran R ) ) o. ( dom R X. ran R ) ) <-> ( ( ( R u. ( dom R X. ran R ) ) o. R ) u. ( ( R u. ( dom R X. ran R ) ) o. ( dom R X. ran R ) ) ) = ( ( R u. ( dom R X. ran R ) ) o. ( dom R X. ran R ) ) ) |
| 22 |
20 21
|
sylib |
|- ( `' R C_ ( ran R X. dom R ) -> ( ( ( R u. ( dom R X. ran R ) ) o. R ) u. ( ( R u. ( dom R X. ran R ) ) o. ( dom R X. ran R ) ) ) = ( ( R u. ( dom R X. ran R ) ) o. ( dom R X. ran R ) ) ) |
| 23 |
|
coundir |
|- ( ( R u. ( dom R X. ran R ) ) o. ( dom R X. ran R ) ) = ( ( R o. ( dom R X. ran R ) ) u. ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) ) |
| 24 |
|
coss1 |
|- ( `' `' R C_ `' ( ran R X. dom R ) -> ( `' `' R o. ( dom R X. ran R ) ) C_ ( `' ( ran R X. dom R ) o. ( dom R X. ran R ) ) ) |
| 25 |
14 24
|
syl |
|- ( `' R C_ ( ran R X. dom R ) -> ( `' `' R o. ( dom R X. ran R ) ) C_ ( `' ( ran R X. dom R ) o. ( dom R X. ran R ) ) ) |
| 26 |
|
cocnvcnv1 |
|- ( `' `' R o. ( dom R X. ran R ) ) = ( R o. ( dom R X. ran R ) ) |
| 27 |
18
|
coeq1i |
|- ( `' ( ran R X. dom R ) o. ( dom R X. ran R ) ) = ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) |
| 28 |
25 26 27
|
3sstr3g |
|- ( `' R C_ ( ran R X. dom R ) -> ( R o. ( dom R X. ran R ) ) C_ ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) ) |
| 29 |
|
ssequn1 |
|- ( ( R o. ( dom R X. ran R ) ) C_ ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) <-> ( ( R o. ( dom R X. ran R ) ) u. ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) ) = ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) ) |
| 30 |
28 29
|
sylib |
|- ( `' R C_ ( ran R X. dom R ) -> ( ( R o. ( dom R X. ran R ) ) u. ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) ) = ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) ) |
| 31 |
|
xptrrel |
|- ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) C_ ( dom R X. ran R ) |
| 32 |
|
ssun2 |
|- ( dom R X. ran R ) C_ ( R u. ( dom R X. ran R ) ) |
| 33 |
31 32
|
sstri |
|- ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) C_ ( R u. ( dom R X. ran R ) ) |
| 34 |
33
|
a1i |
|- ( `' R C_ ( ran R X. dom R ) -> ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) C_ ( R u. ( dom R X. ran R ) ) ) |
| 35 |
30 34
|
eqsstrd |
|- ( `' R C_ ( ran R X. dom R ) -> ( ( R o. ( dom R X. ran R ) ) u. ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) ) C_ ( R u. ( dom R X. ran R ) ) ) |
| 36 |
23 35
|
eqsstrid |
|- ( `' R C_ ( ran R X. dom R ) -> ( ( R u. ( dom R X. ran R ) ) o. ( dom R X. ran R ) ) C_ ( R u. ( dom R X. ran R ) ) ) |
| 37 |
22 36
|
eqsstrd |
|- ( `' R C_ ( ran R X. dom R ) -> ( ( ( R u. ( dom R X. ran R ) ) o. R ) u. ( ( R u. ( dom R X. ran R ) ) o. ( dom R X. ran R ) ) ) C_ ( R u. ( dom R X. ran R ) ) ) |
| 38 |
13 37
|
eqsstrid |
|- ( `' R C_ ( ran R X. dom R ) -> ( ( R u. ( dom R X. ran R ) ) o. ( R u. ( dom R X. ran R ) ) ) C_ ( R u. ( dom R X. ran R ) ) ) |
| 39 |
12 38
|
mp1i |
|- ( ph -> ( ( R u. ( dom R X. ran R ) ) o. ( R u. ( dom R X. ran R ) ) ) C_ ( R u. ( dom R X. ran R ) ) ) |
| 40 |
6 9 11 39
|
clublem |
|- ( ph -> |^| { x | ( R C_ x /\ ( x o. x ) C_ x ) } C_ ( R u. ( dom R X. ran R ) ) ) |