Step |
Hyp |
Ref |
Expression |
1 |
|
trclubgNEW.rex |
|- ( ph -> R e. _V ) |
2 |
1
|
dmexd |
|- ( ph -> dom R e. _V ) |
3 |
|
rnexg |
|- ( R e. _V -> ran R e. _V ) |
4 |
1 3
|
syl |
|- ( ph -> ran R e. _V ) |
5 |
2 4
|
xpexd |
|- ( ph -> ( dom R X. ran R ) e. _V ) |
6 |
|
unexg |
|- ( ( R e. _V /\ ( dom R X. ran R ) e. _V ) -> ( R u. ( dom R X. ran R ) ) e. _V ) |
7 |
1 5 6
|
syl2anc |
|- ( ph -> ( R u. ( dom R X. ran R ) ) e. _V ) |
8 |
|
id |
|- ( x = ( R u. ( dom R X. ran R ) ) -> x = ( R u. ( dom R X. ran R ) ) ) |
9 |
8 8
|
coeq12d |
|- ( x = ( R u. ( dom R X. ran R ) ) -> ( x o. x ) = ( ( R u. ( dom R X. ran R ) ) o. ( R u. ( dom R X. ran R ) ) ) ) |
10 |
9 8
|
sseq12d |
|- ( x = ( R u. ( dom R X. ran R ) ) -> ( ( x o. x ) C_ x <-> ( ( R u. ( dom R X. ran R ) ) o. ( R u. ( dom R X. ran R ) ) ) C_ ( R u. ( dom R X. ran R ) ) ) ) |
11 |
|
ssun1 |
|- R C_ ( R u. ( dom R X. ran R ) ) |
12 |
11
|
a1i |
|- ( ph -> R C_ ( R u. ( dom R X. ran R ) ) ) |
13 |
|
cnvssrndm |
|- `' R C_ ( ran R X. dom R ) |
14 |
|
coundi |
|- ( ( R u. ( dom R X. ran R ) ) o. ( R u. ( dom R X. ran R ) ) ) = ( ( ( R u. ( dom R X. ran R ) ) o. R ) u. ( ( R u. ( dom R X. ran R ) ) o. ( dom R X. ran R ) ) ) |
15 |
|
cnvss |
|- ( `' R C_ ( ran R X. dom R ) -> `' `' R C_ `' ( ran R X. dom R ) ) |
16 |
|
coss2 |
|- ( `' `' R C_ `' ( ran R X. dom R ) -> ( ( R u. ( dom R X. ran R ) ) o. `' `' R ) C_ ( ( R u. ( dom R X. ran R ) ) o. `' ( ran R X. dom R ) ) ) |
17 |
15 16
|
syl |
|- ( `' R C_ ( ran R X. dom R ) -> ( ( R u. ( dom R X. ran R ) ) o. `' `' R ) C_ ( ( R u. ( dom R X. ran R ) ) o. `' ( ran R X. dom R ) ) ) |
18 |
|
cocnvcnv2 |
|- ( ( R u. ( dom R X. ran R ) ) o. `' `' R ) = ( ( R u. ( dom R X. ran R ) ) o. R ) |
19 |
|
cnvxp |
|- `' ( ran R X. dom R ) = ( dom R X. ran R ) |
20 |
19
|
coeq2i |
|- ( ( R u. ( dom R X. ran R ) ) o. `' ( ran R X. dom R ) ) = ( ( R u. ( dom R X. ran R ) ) o. ( dom R X. ran R ) ) |
21 |
17 18 20
|
3sstr3g |
|- ( `' R C_ ( ran R X. dom R ) -> ( ( R u. ( dom R X. ran R ) ) o. R ) C_ ( ( R u. ( dom R X. ran R ) ) o. ( dom R X. ran R ) ) ) |
22 |
|
ssequn1 |
|- ( ( ( R u. ( dom R X. ran R ) ) o. R ) C_ ( ( R u. ( dom R X. ran R ) ) o. ( dom R X. ran R ) ) <-> ( ( ( R u. ( dom R X. ran R ) ) o. R ) u. ( ( R u. ( dom R X. ran R ) ) o. ( dom R X. ran R ) ) ) = ( ( R u. ( dom R X. ran R ) ) o. ( dom R X. ran R ) ) ) |
23 |
21 22
|
sylib |
|- ( `' R C_ ( ran R X. dom R ) -> ( ( ( R u. ( dom R X. ran R ) ) o. R ) u. ( ( R u. ( dom R X. ran R ) ) o. ( dom R X. ran R ) ) ) = ( ( R u. ( dom R X. ran R ) ) o. ( dom R X. ran R ) ) ) |
24 |
|
coundir |
|- ( ( R u. ( dom R X. ran R ) ) o. ( dom R X. ran R ) ) = ( ( R o. ( dom R X. ran R ) ) u. ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) ) |
25 |
|
coss1 |
|- ( `' `' R C_ `' ( ran R X. dom R ) -> ( `' `' R o. ( dom R X. ran R ) ) C_ ( `' ( ran R X. dom R ) o. ( dom R X. ran R ) ) ) |
26 |
15 25
|
syl |
|- ( `' R C_ ( ran R X. dom R ) -> ( `' `' R o. ( dom R X. ran R ) ) C_ ( `' ( ran R X. dom R ) o. ( dom R X. ran R ) ) ) |
27 |
|
cocnvcnv1 |
|- ( `' `' R o. ( dom R X. ran R ) ) = ( R o. ( dom R X. ran R ) ) |
28 |
19
|
coeq1i |
|- ( `' ( ran R X. dom R ) o. ( dom R X. ran R ) ) = ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) |
29 |
26 27 28
|
3sstr3g |
|- ( `' R C_ ( ran R X. dom R ) -> ( R o. ( dom R X. ran R ) ) C_ ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) ) |
30 |
|
ssequn1 |
|- ( ( R o. ( dom R X. ran R ) ) C_ ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) <-> ( ( R o. ( dom R X. ran R ) ) u. ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) ) = ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) ) |
31 |
29 30
|
sylib |
|- ( `' R C_ ( ran R X. dom R ) -> ( ( R o. ( dom R X. ran R ) ) u. ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) ) = ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) ) |
32 |
|
xptrrel |
|- ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) C_ ( dom R X. ran R ) |
33 |
|
ssun2 |
|- ( dom R X. ran R ) C_ ( R u. ( dom R X. ran R ) ) |
34 |
32 33
|
sstri |
|- ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) C_ ( R u. ( dom R X. ran R ) ) |
35 |
34
|
a1i |
|- ( `' R C_ ( ran R X. dom R ) -> ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) C_ ( R u. ( dom R X. ran R ) ) ) |
36 |
31 35
|
eqsstrd |
|- ( `' R C_ ( ran R X. dom R ) -> ( ( R o. ( dom R X. ran R ) ) u. ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) ) C_ ( R u. ( dom R X. ran R ) ) ) |
37 |
24 36
|
eqsstrid |
|- ( `' R C_ ( ran R X. dom R ) -> ( ( R u. ( dom R X. ran R ) ) o. ( dom R X. ran R ) ) C_ ( R u. ( dom R X. ran R ) ) ) |
38 |
23 37
|
eqsstrd |
|- ( `' R C_ ( ran R X. dom R ) -> ( ( ( R u. ( dom R X. ran R ) ) o. R ) u. ( ( R u. ( dom R X. ran R ) ) o. ( dom R X. ran R ) ) ) C_ ( R u. ( dom R X. ran R ) ) ) |
39 |
14 38
|
eqsstrid |
|- ( `' R C_ ( ran R X. dom R ) -> ( ( R u. ( dom R X. ran R ) ) o. ( R u. ( dom R X. ran R ) ) ) C_ ( R u. ( dom R X. ran R ) ) ) |
40 |
13 39
|
mp1i |
|- ( ph -> ( ( R u. ( dom R X. ran R ) ) o. ( R u. ( dom R X. ran R ) ) ) C_ ( R u. ( dom R X. ran R ) ) ) |
41 |
7 10 12 40
|
clublem |
|- ( ph -> |^| { x | ( R C_ x /\ ( x o. x ) C_ x ) } C_ ( R u. ( dom R X. ran R ) ) ) |