Metamath Proof Explorer


Theorem trclubNEW

Description: If a relation exists then the transitive closure has an upper bound. (Contributed by RP, 24-Jul-2020)

Ref Expression
Hypotheses trclubNEW.rex φRV
trclubNEW.rel φRelR
Assertion trclubNEW φx|RxxxxdomR×ranR

Proof

Step Hyp Ref Expression
1 trclubNEW.rex φRV
2 trclubNEW.rel φRelR
3 1 trclubgNEW φx|RxxxxRdomR×ranR
4 relssdmrn RelRRdomR×ranR
5 2 4 syl φRdomR×ranR
6 ssequn1 RdomR×ranRRdomR×ranR=domR×ranR
7 5 6 sylib φRdomR×ranR=domR×ranR
8 3 7 sseqtrd φx|RxxxxdomR×ranR