Metamath Proof Explorer


Theorem trclubNEW

Description: If a relation exists then the transitive closure has an upper bound. (Contributed by RP, 24-Jul-2020)

Ref Expression
Hypotheses trclubNEW.rex ( 𝜑𝑅 ∈ V )
trclubNEW.rel ( 𝜑 → Rel 𝑅 )
Assertion trclubNEW ( 𝜑 { 𝑥 ∣ ( 𝑅𝑥 ∧ ( 𝑥𝑥 ) ⊆ 𝑥 ) } ⊆ ( dom 𝑅 × ran 𝑅 ) )

Proof

Step Hyp Ref Expression
1 trclubNEW.rex ( 𝜑𝑅 ∈ V )
2 trclubNEW.rel ( 𝜑 → Rel 𝑅 )
3 1 trclubgNEW ( 𝜑 { 𝑥 ∣ ( 𝑅𝑥 ∧ ( 𝑥𝑥 ) ⊆ 𝑥 ) } ⊆ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) )
4 relssdmrn ( Rel 𝑅𝑅 ⊆ ( dom 𝑅 × ran 𝑅 ) )
5 2 4 syl ( 𝜑𝑅 ⊆ ( dom 𝑅 × ran 𝑅 ) )
6 ssequn1 ( 𝑅 ⊆ ( dom 𝑅 × ran 𝑅 ) ↔ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) = ( dom 𝑅 × ran 𝑅 ) )
7 5 6 sylib ( 𝜑 → ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) = ( dom 𝑅 × ran 𝑅 ) )
8 3 7 sseqtrd ( 𝜑 { 𝑥 ∣ ( 𝑅𝑥 ∧ ( 𝑥𝑥 ) ⊆ 𝑥 ) } ⊆ ( dom 𝑅 × ran 𝑅 ) )