Description: If a relation exists then the transitive closure has an upper bound. (Contributed by RP, 24-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | trclubNEW.rex | ⊢ ( 𝜑 → 𝑅 ∈ V ) | |
| trclubNEW.rel | ⊢ ( 𝜑 → Rel 𝑅 ) | ||
| Assertion | trclubNEW | ⊢ ( 𝜑 → ∩ { 𝑥 ∣ ( 𝑅 ⊆ 𝑥 ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑥 ) } ⊆ ( dom 𝑅 × ran 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trclubNEW.rex | ⊢ ( 𝜑 → 𝑅 ∈ V ) | |
| 2 | trclubNEW.rel | ⊢ ( 𝜑 → Rel 𝑅 ) | |
| 3 | 1 | trclubgNEW | ⊢ ( 𝜑 → ∩ { 𝑥 ∣ ( 𝑅 ⊆ 𝑥 ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑥 ) } ⊆ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ) |
| 4 | relssdmrn | ⊢ ( Rel 𝑅 → 𝑅 ⊆ ( dom 𝑅 × ran 𝑅 ) ) | |
| 5 | 2 4 | syl | ⊢ ( 𝜑 → 𝑅 ⊆ ( dom 𝑅 × ran 𝑅 ) ) |
| 6 | ssequn1 | ⊢ ( 𝑅 ⊆ ( dom 𝑅 × ran 𝑅 ) ↔ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) = ( dom 𝑅 × ran 𝑅 ) ) | |
| 7 | 5 6 | sylib | ⊢ ( 𝜑 → ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) = ( dom 𝑅 × ran 𝑅 ) ) |
| 8 | 3 7 | sseqtrd | ⊢ ( 𝜑 → ∩ { 𝑥 ∣ ( 𝑅 ⊆ 𝑥 ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑥 ) } ⊆ ( dom 𝑅 × ran 𝑅 ) ) |