| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trlres.v |
|- V = ( Vtx ` G ) |
| 2 |
|
trlres.i |
|- I = ( iEdg ` G ) |
| 3 |
|
trlres.d |
|- ( ph -> F ( Trails ` G ) P ) |
| 4 |
|
trlres.n |
|- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
| 5 |
|
trlres.h |
|- H = ( F prefix N ) |
| 6 |
2
|
trlf1 |
|- ( F ( Trails ` G ) P -> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I ) |
| 7 |
3 6
|
syl |
|- ( ph -> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I ) |
| 8 |
|
elfzouz2 |
|- ( N e. ( 0 ..^ ( # ` F ) ) -> ( # ` F ) e. ( ZZ>= ` N ) ) |
| 9 |
|
fzoss2 |
|- ( ( # ` F ) e. ( ZZ>= ` N ) -> ( 0 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) |
| 10 |
4 8 9
|
3syl |
|- ( ph -> ( 0 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) |
| 11 |
|
f1ores |
|- ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I /\ ( 0 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) -> ( F |` ( 0 ..^ N ) ) : ( 0 ..^ N ) -1-1-onto-> ( F " ( 0 ..^ N ) ) ) |
| 12 |
7 10 11
|
syl2anc |
|- ( ph -> ( F |` ( 0 ..^ N ) ) : ( 0 ..^ N ) -1-1-onto-> ( F " ( 0 ..^ N ) ) ) |
| 13 |
|
trliswlk |
|- ( F ( Trails ` G ) P -> F ( Walks ` G ) P ) |
| 14 |
2
|
wlkf |
|- ( F ( Walks ` G ) P -> F e. Word dom I ) |
| 15 |
3 13 14
|
3syl |
|- ( ph -> F e. Word dom I ) |
| 16 |
|
fzossfz |
|- ( 0 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) |
| 17 |
16 4
|
sselid |
|- ( ph -> N e. ( 0 ... ( # ` F ) ) ) |
| 18 |
|
pfxres |
|- ( ( F e. Word dom I /\ N e. ( 0 ... ( # ` F ) ) ) -> ( F prefix N ) = ( F |` ( 0 ..^ N ) ) ) |
| 19 |
15 17 18
|
syl2anc |
|- ( ph -> ( F prefix N ) = ( F |` ( 0 ..^ N ) ) ) |
| 20 |
5 19
|
eqtrid |
|- ( ph -> H = ( F |` ( 0 ..^ N ) ) ) |
| 21 |
5
|
fveq2i |
|- ( # ` H ) = ( # ` ( F prefix N ) ) |
| 22 |
|
elfzofz |
|- ( N e. ( 0 ..^ ( # ` F ) ) -> N e. ( 0 ... ( # ` F ) ) ) |
| 23 |
4 22
|
syl |
|- ( ph -> N e. ( 0 ... ( # ` F ) ) ) |
| 24 |
|
pfxlen |
|- ( ( F e. Word dom I /\ N e. ( 0 ... ( # ` F ) ) ) -> ( # ` ( F prefix N ) ) = N ) |
| 25 |
15 23 24
|
syl2anc |
|- ( ph -> ( # ` ( F prefix N ) ) = N ) |
| 26 |
21 25
|
eqtrid |
|- ( ph -> ( # ` H ) = N ) |
| 27 |
26
|
oveq2d |
|- ( ph -> ( 0 ..^ ( # ` H ) ) = ( 0 ..^ N ) ) |
| 28 |
|
wrdf |
|- ( F e. Word dom I -> F : ( 0 ..^ ( # ` F ) ) --> dom I ) |
| 29 |
|
fimass |
|- ( F : ( 0 ..^ ( # ` F ) ) --> dom I -> ( F " ( 0 ..^ N ) ) C_ dom I ) |
| 30 |
14 28 29
|
3syl |
|- ( F ( Walks ` G ) P -> ( F " ( 0 ..^ N ) ) C_ dom I ) |
| 31 |
3 13 30
|
3syl |
|- ( ph -> ( F " ( 0 ..^ N ) ) C_ dom I ) |
| 32 |
|
ssdmres |
|- ( ( F " ( 0 ..^ N ) ) C_ dom I <-> dom ( I |` ( F " ( 0 ..^ N ) ) ) = ( F " ( 0 ..^ N ) ) ) |
| 33 |
31 32
|
sylib |
|- ( ph -> dom ( I |` ( F " ( 0 ..^ N ) ) ) = ( F " ( 0 ..^ N ) ) ) |
| 34 |
20 27 33
|
f1oeq123d |
|- ( ph -> ( H : ( 0 ..^ ( # ` H ) ) -1-1-onto-> dom ( I |` ( F " ( 0 ..^ N ) ) ) <-> ( F |` ( 0 ..^ N ) ) : ( 0 ..^ N ) -1-1-onto-> ( F " ( 0 ..^ N ) ) ) ) |
| 35 |
12 34
|
mpbird |
|- ( ph -> H : ( 0 ..^ ( # ` H ) ) -1-1-onto-> dom ( I |` ( F " ( 0 ..^ N ) ) ) ) |