| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ufilfil |
|- ( F e. ( UFil ` X ) -> F e. ( Fil ` X ) ) |
| 2 |
|
fclsfnflim |
|- ( F e. ( Fil ` X ) -> ( x e. ( J fClus F ) <-> E. f e. ( Fil ` X ) ( F C_ f /\ x e. ( J fLim f ) ) ) ) |
| 3 |
1 2
|
syl |
|- ( F e. ( UFil ` X ) -> ( x e. ( J fClus F ) <-> E. f e. ( Fil ` X ) ( F C_ f /\ x e. ( J fLim f ) ) ) ) |
| 4 |
3
|
biimpa |
|- ( ( F e. ( UFil ` X ) /\ x e. ( J fClus F ) ) -> E. f e. ( Fil ` X ) ( F C_ f /\ x e. ( J fLim f ) ) ) |
| 5 |
|
simprrr |
|- ( ( ( F e. ( UFil ` X ) /\ x e. ( J fClus F ) ) /\ ( f e. ( Fil ` X ) /\ ( F C_ f /\ x e. ( J fLim f ) ) ) ) -> x e. ( J fLim f ) ) |
| 6 |
|
simpll |
|- ( ( ( F e. ( UFil ` X ) /\ x e. ( J fClus F ) ) /\ ( f e. ( Fil ` X ) /\ ( F C_ f /\ x e. ( J fLim f ) ) ) ) -> F e. ( UFil ` X ) ) |
| 7 |
|
simprl |
|- ( ( ( F e. ( UFil ` X ) /\ x e. ( J fClus F ) ) /\ ( f e. ( Fil ` X ) /\ ( F C_ f /\ x e. ( J fLim f ) ) ) ) -> f e. ( Fil ` X ) ) |
| 8 |
|
simprrl |
|- ( ( ( F e. ( UFil ` X ) /\ x e. ( J fClus F ) ) /\ ( f e. ( Fil ` X ) /\ ( F C_ f /\ x e. ( J fLim f ) ) ) ) -> F C_ f ) |
| 9 |
|
ufilmax |
|- ( ( F e. ( UFil ` X ) /\ f e. ( Fil ` X ) /\ F C_ f ) -> F = f ) |
| 10 |
6 7 8 9
|
syl3anc |
|- ( ( ( F e. ( UFil ` X ) /\ x e. ( J fClus F ) ) /\ ( f e. ( Fil ` X ) /\ ( F C_ f /\ x e. ( J fLim f ) ) ) ) -> F = f ) |
| 11 |
10
|
oveq2d |
|- ( ( ( F e. ( UFil ` X ) /\ x e. ( J fClus F ) ) /\ ( f e. ( Fil ` X ) /\ ( F C_ f /\ x e. ( J fLim f ) ) ) ) -> ( J fLim F ) = ( J fLim f ) ) |
| 12 |
5 11
|
eleqtrrd |
|- ( ( ( F e. ( UFil ` X ) /\ x e. ( J fClus F ) ) /\ ( f e. ( Fil ` X ) /\ ( F C_ f /\ x e. ( J fLim f ) ) ) ) -> x e. ( J fLim F ) ) |
| 13 |
4 12
|
rexlimddv |
|- ( ( F e. ( UFil ` X ) /\ x e. ( J fClus F ) ) -> x e. ( J fLim F ) ) |
| 14 |
13
|
ex |
|- ( F e. ( UFil ` X ) -> ( x e. ( J fClus F ) -> x e. ( J fLim F ) ) ) |
| 15 |
14
|
ssrdv |
|- ( F e. ( UFil ` X ) -> ( J fClus F ) C_ ( J fLim F ) ) |
| 16 |
|
flimfcls |
|- ( J fLim F ) C_ ( J fClus F ) |
| 17 |
16
|
a1i |
|- ( F e. ( UFil ` X ) -> ( J fLim F ) C_ ( J fClus F ) ) |
| 18 |
15 17
|
eqssd |
|- ( F e. ( UFil ` X ) -> ( J fClus F ) = ( J fLim F ) ) |