| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-br |
|- ( <. A , B >. uncurry F w <-> <. <. A , B >. , w >. e. uncurry F ) |
| 2 |
|
df-unc |
|- uncurry F = { <. <. x , y >. , z >. | y ( F ` x ) z } |
| 3 |
2
|
eleq2i |
|- ( <. <. A , B >. , w >. e. uncurry F <-> <. <. A , B >. , w >. e. { <. <. x , y >. , z >. | y ( F ` x ) z } ) |
| 4 |
1 3
|
bitri |
|- ( <. A , B >. uncurry F w <-> <. <. A , B >. , w >. e. { <. <. x , y >. , z >. | y ( F ` x ) z } ) |
| 5 |
|
vex |
|- w e. _V |
| 6 |
|
simp2 |
|- ( ( x = A /\ y = B /\ z = w ) -> y = B ) |
| 7 |
|
fveq2 |
|- ( x = A -> ( F ` x ) = ( F ` A ) ) |
| 8 |
7
|
3ad2ant1 |
|- ( ( x = A /\ y = B /\ z = w ) -> ( F ` x ) = ( F ` A ) ) |
| 9 |
|
simp3 |
|- ( ( x = A /\ y = B /\ z = w ) -> z = w ) |
| 10 |
6 8 9
|
breq123d |
|- ( ( x = A /\ y = B /\ z = w ) -> ( y ( F ` x ) z <-> B ( F ` A ) w ) ) |
| 11 |
10
|
eloprabga |
|- ( ( A e. V /\ B e. W /\ w e. _V ) -> ( <. <. A , B >. , w >. e. { <. <. x , y >. , z >. | y ( F ` x ) z } <-> B ( F ` A ) w ) ) |
| 12 |
5 11
|
mp3an3 |
|- ( ( A e. V /\ B e. W ) -> ( <. <. A , B >. , w >. e. { <. <. x , y >. , z >. | y ( F ` x ) z } <-> B ( F ` A ) w ) ) |
| 13 |
4 12
|
bitrid |
|- ( ( A e. V /\ B e. W ) -> ( <. A , B >. uncurry F w <-> B ( F ` A ) w ) ) |
| 14 |
13
|
iotabidv |
|- ( ( A e. V /\ B e. W ) -> ( iota w <. A , B >. uncurry F w ) = ( iota w B ( F ` A ) w ) ) |
| 15 |
|
df-ov |
|- ( A uncurry F B ) = ( uncurry F ` <. A , B >. ) |
| 16 |
|
df-fv |
|- ( uncurry F ` <. A , B >. ) = ( iota w <. A , B >. uncurry F w ) |
| 17 |
15 16
|
eqtri |
|- ( A uncurry F B ) = ( iota w <. A , B >. uncurry F w ) |
| 18 |
|
df-fv |
|- ( ( F ` A ) ` B ) = ( iota w B ( F ` A ) w ) |
| 19 |
14 17 18
|
3eqtr4g |
|- ( ( A e. V /\ B e. W ) -> ( A uncurry F B ) = ( ( F ` A ) ` B ) ) |