| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-br |  |-  ( <. A , B >. uncurry F w <-> <. <. A , B >. , w >. e. uncurry F ) | 
						
							| 2 |  | df-unc |  |-  uncurry F = { <. <. x , y >. , z >. | y ( F ` x ) z } | 
						
							| 3 | 2 | eleq2i |  |-  ( <. <. A , B >. , w >. e. uncurry F <-> <. <. A , B >. , w >. e. { <. <. x , y >. , z >. | y ( F ` x ) z } ) | 
						
							| 4 | 1 3 | bitri |  |-  ( <. A , B >. uncurry F w <-> <. <. A , B >. , w >. e. { <. <. x , y >. , z >. | y ( F ` x ) z } ) | 
						
							| 5 |  | vex |  |-  w e. _V | 
						
							| 6 |  | simp2 |  |-  ( ( x = A /\ y = B /\ z = w ) -> y = B ) | 
						
							| 7 |  | fveq2 |  |-  ( x = A -> ( F ` x ) = ( F ` A ) ) | 
						
							| 8 | 7 | 3ad2ant1 |  |-  ( ( x = A /\ y = B /\ z = w ) -> ( F ` x ) = ( F ` A ) ) | 
						
							| 9 |  | simp3 |  |-  ( ( x = A /\ y = B /\ z = w ) -> z = w ) | 
						
							| 10 | 6 8 9 | breq123d |  |-  ( ( x = A /\ y = B /\ z = w ) -> ( y ( F ` x ) z <-> B ( F ` A ) w ) ) | 
						
							| 11 | 10 | eloprabga |  |-  ( ( A e. V /\ B e. W /\ w e. _V ) -> ( <. <. A , B >. , w >. e. { <. <. x , y >. , z >. | y ( F ` x ) z } <-> B ( F ` A ) w ) ) | 
						
							| 12 | 5 11 | mp3an3 |  |-  ( ( A e. V /\ B e. W ) -> ( <. <. A , B >. , w >. e. { <. <. x , y >. , z >. | y ( F ` x ) z } <-> B ( F ` A ) w ) ) | 
						
							| 13 | 4 12 | bitrid |  |-  ( ( A e. V /\ B e. W ) -> ( <. A , B >. uncurry F w <-> B ( F ` A ) w ) ) | 
						
							| 14 | 13 | iotabidv |  |-  ( ( A e. V /\ B e. W ) -> ( iota w <. A , B >. uncurry F w ) = ( iota w B ( F ` A ) w ) ) | 
						
							| 15 |  | df-ov |  |-  ( A uncurry F B ) = ( uncurry F ` <. A , B >. ) | 
						
							| 16 |  | df-fv |  |-  ( uncurry F ` <. A , B >. ) = ( iota w <. A , B >. uncurry F w ) | 
						
							| 17 | 15 16 | eqtri |  |-  ( A uncurry F B ) = ( iota w <. A , B >. uncurry F w ) | 
						
							| 18 |  | df-fv |  |-  ( ( F ` A ) ` B ) = ( iota w B ( F ` A ) w ) | 
						
							| 19 | 14 17 18 | 3eqtr4g |  |-  ( ( A e. V /\ B e. W ) -> ( A uncurry F B ) = ( ( F ` A ) ` B ) ) |