Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Brendan Leahy
uncov
Next ⟩
curunc
Metamath Proof Explorer
Ascii
Unicode
Theorem
uncov
Description:
Value of uncurrying.
(Contributed by
Brendan Leahy
, 2-Jun-2021)
Ref
Expression
Assertion
uncov
⊢
A
∈
V
∧
B
∈
W
→
A
uncurry
F
B
=
F
⁡
A
⁡
B
Proof
Step
Hyp
Ref
Expression
1
df-br
⊢
A
B
uncurry
F
w
↔
A
B
w
∈
uncurry
F
2
df-unc
⊢
uncurry
F
=
x
y
z
|
y
F
⁡
x
z
3
2
eleq2i
⊢
A
B
w
∈
uncurry
F
↔
A
B
w
∈
x
y
z
|
y
F
⁡
x
z
4
1
3
bitri
⊢
A
B
uncurry
F
w
↔
A
B
w
∈
x
y
z
|
y
F
⁡
x
z
5
vex
⊢
w
∈
V
6
simp2
⊢
x
=
A
∧
y
=
B
∧
z
=
w
→
y
=
B
7
fveq2
⊢
x
=
A
→
F
⁡
x
=
F
⁡
A
8
7
3ad2ant1
⊢
x
=
A
∧
y
=
B
∧
z
=
w
→
F
⁡
x
=
F
⁡
A
9
simp3
⊢
x
=
A
∧
y
=
B
∧
z
=
w
→
z
=
w
10
6
8
9
breq123d
⊢
x
=
A
∧
y
=
B
∧
z
=
w
→
y
F
⁡
x
z
↔
B
F
⁡
A
w
11
10
eloprabga
⊢
A
∈
V
∧
B
∈
W
∧
w
∈
V
→
A
B
w
∈
x
y
z
|
y
F
⁡
x
z
↔
B
F
⁡
A
w
12
5
11
mp3an3
⊢
A
∈
V
∧
B
∈
W
→
A
B
w
∈
x
y
z
|
y
F
⁡
x
z
↔
B
F
⁡
A
w
13
4
12
syl5bb
⊢
A
∈
V
∧
B
∈
W
→
A
B
uncurry
F
w
↔
B
F
⁡
A
w
14
13
iotabidv
⊢
A
∈
V
∧
B
∈
W
→
ι
w
|
A
B
uncurry
F
w
=
ι
w
|
B
F
⁡
A
w
15
df-ov
⊢
A
uncurry
F
B
=
uncurry
F
⁡
A
B
16
df-fv
⊢
uncurry
F
⁡
A
B
=
ι
w
|
A
B
uncurry
F
w
17
15
16
eqtri
⊢
A
uncurry
F
B
=
ι
w
|
A
B
uncurry
F
w
18
df-fv
⊢
F
⁡
A
⁡
B
=
ι
w
|
B
F
⁡
A
w
19
14
17
18
3eqtr4g
⊢
A
∈
V
∧
B
∈
W
→
A
uncurry
F
B
=
F
⁡
A
⁡
B