Step |
Hyp |
Ref |
Expression |
1 |
|
relsdom |
|- Rel ~< |
2 |
1
|
brrelex2i |
|- ( 1o ~< A -> A e. _V ) |
3 |
2
|
adantr |
|- ( ( 1o ~< A /\ B ~<_ A ) -> A e. _V ) |
4 |
|
1onn |
|- 1o e. _om |
5 |
|
xpsneng |
|- ( ( A e. _V /\ 1o e. _om ) -> ( A X. { 1o } ) ~~ A ) |
6 |
3 4 5
|
sylancl |
|- ( ( 1o ~< A /\ B ~<_ A ) -> ( A X. { 1o } ) ~~ A ) |
7 |
6
|
ensymd |
|- ( ( 1o ~< A /\ B ~<_ A ) -> A ~~ ( A X. { 1o } ) ) |
8 |
|
endom |
|- ( A ~~ ( A X. { 1o } ) -> A ~<_ ( A X. { 1o } ) ) |
9 |
7 8
|
syl |
|- ( ( 1o ~< A /\ B ~<_ A ) -> A ~<_ ( A X. { 1o } ) ) |
10 |
|
simpr |
|- ( ( 1o ~< A /\ B ~<_ A ) -> B ~<_ A ) |
11 |
|
0ex |
|- (/) e. _V |
12 |
|
xpsneng |
|- ( ( A e. _V /\ (/) e. _V ) -> ( A X. { (/) } ) ~~ A ) |
13 |
3 11 12
|
sylancl |
|- ( ( 1o ~< A /\ B ~<_ A ) -> ( A X. { (/) } ) ~~ A ) |
14 |
13
|
ensymd |
|- ( ( 1o ~< A /\ B ~<_ A ) -> A ~~ ( A X. { (/) } ) ) |
15 |
|
domentr |
|- ( ( B ~<_ A /\ A ~~ ( A X. { (/) } ) ) -> B ~<_ ( A X. { (/) } ) ) |
16 |
10 14 15
|
syl2anc |
|- ( ( 1o ~< A /\ B ~<_ A ) -> B ~<_ ( A X. { (/) } ) ) |
17 |
|
1n0 |
|- 1o =/= (/) |
18 |
|
xpsndisj |
|- ( 1o =/= (/) -> ( ( A X. { 1o } ) i^i ( A X. { (/) } ) ) = (/) ) |
19 |
17 18
|
mp1i |
|- ( ( 1o ~< A /\ B ~<_ A ) -> ( ( A X. { 1o } ) i^i ( A X. { (/) } ) ) = (/) ) |
20 |
|
undom |
|- ( ( ( A ~<_ ( A X. { 1o } ) /\ B ~<_ ( A X. { (/) } ) ) /\ ( ( A X. { 1o } ) i^i ( A X. { (/) } ) ) = (/) ) -> ( A u. B ) ~<_ ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) ) |
21 |
9 16 19 20
|
syl21anc |
|- ( ( 1o ~< A /\ B ~<_ A ) -> ( A u. B ) ~<_ ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) ) |
22 |
|
sdomentr |
|- ( ( 1o ~< A /\ A ~~ ( A X. { 1o } ) ) -> 1o ~< ( A X. { 1o } ) ) |
23 |
7 22
|
syldan |
|- ( ( 1o ~< A /\ B ~<_ A ) -> 1o ~< ( A X. { 1o } ) ) |
24 |
|
sdomentr |
|- ( ( 1o ~< A /\ A ~~ ( A X. { (/) } ) ) -> 1o ~< ( A X. { (/) } ) ) |
25 |
14 24
|
syldan |
|- ( ( 1o ~< A /\ B ~<_ A ) -> 1o ~< ( A X. { (/) } ) ) |
26 |
|
unxpdom |
|- ( ( 1o ~< ( A X. { 1o } ) /\ 1o ~< ( A X. { (/) } ) ) -> ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) ~<_ ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) ) |
27 |
23 25 26
|
syl2anc |
|- ( ( 1o ~< A /\ B ~<_ A ) -> ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) ~<_ ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) ) |
28 |
|
xpen |
|- ( ( ( A X. { 1o } ) ~~ A /\ ( A X. { (/) } ) ~~ A ) -> ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) ~~ ( A X. A ) ) |
29 |
6 13 28
|
syl2anc |
|- ( ( 1o ~< A /\ B ~<_ A ) -> ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) ~~ ( A X. A ) ) |
30 |
|
domentr |
|- ( ( ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) ~<_ ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) /\ ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) ~~ ( A X. A ) ) -> ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) ~<_ ( A X. A ) ) |
31 |
27 29 30
|
syl2anc |
|- ( ( 1o ~< A /\ B ~<_ A ) -> ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) ~<_ ( A X. A ) ) |
32 |
|
domtr |
|- ( ( ( A u. B ) ~<_ ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) /\ ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) ~<_ ( A X. A ) ) -> ( A u. B ) ~<_ ( A X. A ) ) |
33 |
21 31 32
|
syl2anc |
|- ( ( 1o ~< A /\ B ~<_ A ) -> ( A u. B ) ~<_ ( A X. A ) ) |