| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ustund.1 |
|- ( ph -> ( A X. A ) C_ V ) |
| 2 |
|
ustund.2 |
|- ( ph -> ( B X. B ) C_ V ) |
| 3 |
|
ustund.3 |
|- ( ph -> ( A i^i B ) =/= (/) ) |
| 4 |
|
xpco |
|- ( ( A i^i B ) =/= (/) -> ( ( ( A i^i B ) X. ( A u. B ) ) o. ( ( A u. B ) X. ( A i^i B ) ) ) = ( ( A u. B ) X. ( A u. B ) ) ) |
| 5 |
3 4
|
syl |
|- ( ph -> ( ( ( A i^i B ) X. ( A u. B ) ) o. ( ( A u. B ) X. ( A i^i B ) ) ) = ( ( A u. B ) X. ( A u. B ) ) ) |
| 6 |
|
xpundi |
|- ( ( A i^i B ) X. ( A u. B ) ) = ( ( ( A i^i B ) X. A ) u. ( ( A i^i B ) X. B ) ) |
| 7 |
|
xpindir |
|- ( ( A i^i B ) X. A ) = ( ( A X. A ) i^i ( B X. A ) ) |
| 8 |
|
inss1 |
|- ( ( A X. A ) i^i ( B X. A ) ) C_ ( A X. A ) |
| 9 |
8 1
|
sstrid |
|- ( ph -> ( ( A X. A ) i^i ( B X. A ) ) C_ V ) |
| 10 |
7 9
|
eqsstrid |
|- ( ph -> ( ( A i^i B ) X. A ) C_ V ) |
| 11 |
|
xpindir |
|- ( ( A i^i B ) X. B ) = ( ( A X. B ) i^i ( B X. B ) ) |
| 12 |
|
inss2 |
|- ( ( A X. B ) i^i ( B X. B ) ) C_ ( B X. B ) |
| 13 |
12 2
|
sstrid |
|- ( ph -> ( ( A X. B ) i^i ( B X. B ) ) C_ V ) |
| 14 |
11 13
|
eqsstrid |
|- ( ph -> ( ( A i^i B ) X. B ) C_ V ) |
| 15 |
10 14
|
unssd |
|- ( ph -> ( ( ( A i^i B ) X. A ) u. ( ( A i^i B ) X. B ) ) C_ V ) |
| 16 |
6 15
|
eqsstrid |
|- ( ph -> ( ( A i^i B ) X. ( A u. B ) ) C_ V ) |
| 17 |
|
xpundir |
|- ( ( A u. B ) X. ( A i^i B ) ) = ( ( A X. ( A i^i B ) ) u. ( B X. ( A i^i B ) ) ) |
| 18 |
|
xpindi |
|- ( A X. ( A i^i B ) ) = ( ( A X. A ) i^i ( A X. B ) ) |
| 19 |
|
inss1 |
|- ( ( A X. A ) i^i ( A X. B ) ) C_ ( A X. A ) |
| 20 |
19 1
|
sstrid |
|- ( ph -> ( ( A X. A ) i^i ( A X. B ) ) C_ V ) |
| 21 |
18 20
|
eqsstrid |
|- ( ph -> ( A X. ( A i^i B ) ) C_ V ) |
| 22 |
|
xpindi |
|- ( B X. ( A i^i B ) ) = ( ( B X. A ) i^i ( B X. B ) ) |
| 23 |
|
inss2 |
|- ( ( B X. A ) i^i ( B X. B ) ) C_ ( B X. B ) |
| 24 |
23 2
|
sstrid |
|- ( ph -> ( ( B X. A ) i^i ( B X. B ) ) C_ V ) |
| 25 |
22 24
|
eqsstrid |
|- ( ph -> ( B X. ( A i^i B ) ) C_ V ) |
| 26 |
21 25
|
unssd |
|- ( ph -> ( ( A X. ( A i^i B ) ) u. ( B X. ( A i^i B ) ) ) C_ V ) |
| 27 |
17 26
|
eqsstrid |
|- ( ph -> ( ( A u. B ) X. ( A i^i B ) ) C_ V ) |
| 28 |
16 27
|
coss12d |
|- ( ph -> ( ( ( A i^i B ) X. ( A u. B ) ) o. ( ( A u. B ) X. ( A i^i B ) ) ) C_ ( V o. V ) ) |
| 29 |
5 28
|
eqsstrrd |
|- ( ph -> ( ( A u. B ) X. ( A u. B ) ) C_ ( V o. V ) ) |