| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ustund.1 |
⊢ ( 𝜑 → ( 𝐴 × 𝐴 ) ⊆ 𝑉 ) |
| 2 |
|
ustund.2 |
⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) ⊆ 𝑉 ) |
| 3 |
|
ustund.3 |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ≠ ∅ ) |
| 4 |
|
xpco |
⊢ ( ( 𝐴 ∩ 𝐵 ) ≠ ∅ → ( ( ( 𝐴 ∩ 𝐵 ) × ( 𝐴 ∪ 𝐵 ) ) ∘ ( ( 𝐴 ∪ 𝐵 ) × ( 𝐴 ∩ 𝐵 ) ) ) = ( ( 𝐴 ∪ 𝐵 ) × ( 𝐴 ∪ 𝐵 ) ) ) |
| 5 |
3 4
|
syl |
⊢ ( 𝜑 → ( ( ( 𝐴 ∩ 𝐵 ) × ( 𝐴 ∪ 𝐵 ) ) ∘ ( ( 𝐴 ∪ 𝐵 ) × ( 𝐴 ∩ 𝐵 ) ) ) = ( ( 𝐴 ∪ 𝐵 ) × ( 𝐴 ∪ 𝐵 ) ) ) |
| 6 |
|
xpundi |
⊢ ( ( 𝐴 ∩ 𝐵 ) × ( 𝐴 ∪ 𝐵 ) ) = ( ( ( 𝐴 ∩ 𝐵 ) × 𝐴 ) ∪ ( ( 𝐴 ∩ 𝐵 ) × 𝐵 ) ) |
| 7 |
|
xpindir |
⊢ ( ( 𝐴 ∩ 𝐵 ) × 𝐴 ) = ( ( 𝐴 × 𝐴 ) ∩ ( 𝐵 × 𝐴 ) ) |
| 8 |
|
inss1 |
⊢ ( ( 𝐴 × 𝐴 ) ∩ ( 𝐵 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) |
| 9 |
8 1
|
sstrid |
⊢ ( 𝜑 → ( ( 𝐴 × 𝐴 ) ∩ ( 𝐵 × 𝐴 ) ) ⊆ 𝑉 ) |
| 10 |
7 9
|
eqsstrid |
⊢ ( 𝜑 → ( ( 𝐴 ∩ 𝐵 ) × 𝐴 ) ⊆ 𝑉 ) |
| 11 |
|
xpindir |
⊢ ( ( 𝐴 ∩ 𝐵 ) × 𝐵 ) = ( ( 𝐴 × 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) |
| 12 |
|
inss2 |
⊢ ( ( 𝐴 × 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ⊆ ( 𝐵 × 𝐵 ) |
| 13 |
12 2
|
sstrid |
⊢ ( 𝜑 → ( ( 𝐴 × 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ⊆ 𝑉 ) |
| 14 |
11 13
|
eqsstrid |
⊢ ( 𝜑 → ( ( 𝐴 ∩ 𝐵 ) × 𝐵 ) ⊆ 𝑉 ) |
| 15 |
10 14
|
unssd |
⊢ ( 𝜑 → ( ( ( 𝐴 ∩ 𝐵 ) × 𝐴 ) ∪ ( ( 𝐴 ∩ 𝐵 ) × 𝐵 ) ) ⊆ 𝑉 ) |
| 16 |
6 15
|
eqsstrid |
⊢ ( 𝜑 → ( ( 𝐴 ∩ 𝐵 ) × ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑉 ) |
| 17 |
|
xpundir |
⊢ ( ( 𝐴 ∪ 𝐵 ) × ( 𝐴 ∩ 𝐵 ) ) = ( ( 𝐴 × ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐵 × ( 𝐴 ∩ 𝐵 ) ) ) |
| 18 |
|
xpindi |
⊢ ( 𝐴 × ( 𝐴 ∩ 𝐵 ) ) = ( ( 𝐴 × 𝐴 ) ∩ ( 𝐴 × 𝐵 ) ) |
| 19 |
|
inss1 |
⊢ ( ( 𝐴 × 𝐴 ) ∩ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝐴 × 𝐴 ) |
| 20 |
19 1
|
sstrid |
⊢ ( 𝜑 → ( ( 𝐴 × 𝐴 ) ∩ ( 𝐴 × 𝐵 ) ) ⊆ 𝑉 ) |
| 21 |
18 20
|
eqsstrid |
⊢ ( 𝜑 → ( 𝐴 × ( 𝐴 ∩ 𝐵 ) ) ⊆ 𝑉 ) |
| 22 |
|
xpindi |
⊢ ( 𝐵 × ( 𝐴 ∩ 𝐵 ) ) = ( ( 𝐵 × 𝐴 ) ∩ ( 𝐵 × 𝐵 ) ) |
| 23 |
|
inss2 |
⊢ ( ( 𝐵 × 𝐴 ) ∩ ( 𝐵 × 𝐵 ) ) ⊆ ( 𝐵 × 𝐵 ) |
| 24 |
23 2
|
sstrid |
⊢ ( 𝜑 → ( ( 𝐵 × 𝐴 ) ∩ ( 𝐵 × 𝐵 ) ) ⊆ 𝑉 ) |
| 25 |
22 24
|
eqsstrid |
⊢ ( 𝜑 → ( 𝐵 × ( 𝐴 ∩ 𝐵 ) ) ⊆ 𝑉 ) |
| 26 |
21 25
|
unssd |
⊢ ( 𝜑 → ( ( 𝐴 × ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐵 × ( 𝐴 ∩ 𝐵 ) ) ) ⊆ 𝑉 ) |
| 27 |
17 26
|
eqsstrid |
⊢ ( 𝜑 → ( ( 𝐴 ∪ 𝐵 ) × ( 𝐴 ∩ 𝐵 ) ) ⊆ 𝑉 ) |
| 28 |
16 27
|
coss12d |
⊢ ( 𝜑 → ( ( ( 𝐴 ∩ 𝐵 ) × ( 𝐴 ∪ 𝐵 ) ) ∘ ( ( 𝐴 ∪ 𝐵 ) × ( 𝐴 ∩ 𝐵 ) ) ) ⊆ ( 𝑉 ∘ 𝑉 ) ) |
| 29 |
5 28
|
eqsstrrd |
⊢ ( 𝜑 → ( ( 𝐴 ∪ 𝐵 ) × ( 𝐴 ∪ 𝐵 ) ) ⊆ ( 𝑉 ∘ 𝑉 ) ) |