Metamath Proof Explorer


Theorem ustund

Description: If two intersecting sets A and B are both small in V , their union is small in ( V ^ 2 ) . Proposition 1 of BourbakiTop1 p. II.12. This proposition actually does not require any axiom of the definition of uniform structures. (Contributed by Thierry Arnoux, 17-Nov-2017)

Ref Expression
Hypotheses ustund.1 φ A × A V
ustund.2 φ B × B V
ustund.3 φ A B
Assertion ustund φ A B × A B V V

Proof

Step Hyp Ref Expression
1 ustund.1 φ A × A V
2 ustund.2 φ B × B V
3 ustund.3 φ A B
4 xpco A B A B × A B A B × A B = A B × A B
5 3 4 syl φ A B × A B A B × A B = A B × A B
6 xpundi A B × A B = A B × A A B × B
7 xpindir A B × A = A × A B × A
8 inss1 A × A B × A A × A
9 8 1 sstrid φ A × A B × A V
10 7 9 eqsstrid φ A B × A V
11 xpindir A B × B = A × B B × B
12 inss2 A × B B × B B × B
13 12 2 sstrid φ A × B B × B V
14 11 13 eqsstrid φ A B × B V
15 10 14 unssd φ A B × A A B × B V
16 6 15 eqsstrid φ A B × A B V
17 xpundir A B × A B = A × A B B × A B
18 xpindi A × A B = A × A A × B
19 inss1 A × A A × B A × A
20 19 1 sstrid φ A × A A × B V
21 18 20 eqsstrid φ A × A B V
22 xpindi B × A B = B × A B × B
23 inss2 B × A B × B B × B
24 23 2 sstrid φ B × A B × B V
25 22 24 eqsstrid φ B × A B V
26 21 25 unssd φ A × A B B × A B V
27 17 26 eqsstrid φ A B × A B V
28 16 27 coss12d φ A B × A B A B × A B V V
29 5 28 eqsstrrd φ A B × A B V V