Step |
Hyp |
Ref |
Expression |
1 |
|
wfrlem13OLD.1 |
|- R We A |
2 |
|
wfrlem13OLD.2 |
|- R Se A |
3 |
|
wfrlem13OLD.3 |
|- F = wrecs ( R , A , G ) |
4 |
|
wfrlem13OLD.4 |
|- C = ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) |
5 |
3
|
wfrdmssOLD |
|- dom F C_ A |
6 |
|
eldifn |
|- ( z e. ( A \ dom F ) -> -. z e. dom F ) |
7 |
|
ssun2 |
|- { z } C_ ( dom F u. { z } ) |
8 |
|
vsnid |
|- z e. { z } |
9 |
7 8
|
sselii |
|- z e. ( dom F u. { z } ) |
10 |
4
|
dmeqi |
|- dom C = dom ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) |
11 |
|
dmun |
|- dom ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) = ( dom F u. dom { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) |
12 |
|
fvex |
|- ( G ` ( F |` Pred ( R , A , z ) ) ) e. _V |
13 |
12
|
dmsnop |
|- dom { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } = { z } |
14 |
13
|
uneq2i |
|- ( dom F u. dom { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) = ( dom F u. { z } ) |
15 |
10 11 14
|
3eqtri |
|- dom C = ( dom F u. { z } ) |
16 |
9 15
|
eleqtrri |
|- z e. dom C |
17 |
1 2 3 4
|
wfrlem15OLD |
|- ( ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) -> C e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } ) |
18 |
|
elssuni |
|- ( C e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } -> C C_ U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } ) |
19 |
17 18
|
syl |
|- ( ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) -> C C_ U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } ) |
20 |
|
dfwrecsOLD |
|- wrecs ( R , A , G ) = U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } |
21 |
3 20
|
eqtri |
|- F = U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } |
22 |
19 21
|
sseqtrrdi |
|- ( ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) -> C C_ F ) |
23 |
|
dmss |
|- ( C C_ F -> dom C C_ dom F ) |
24 |
22 23
|
syl |
|- ( ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) -> dom C C_ dom F ) |
25 |
24
|
sseld |
|- ( ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) -> ( z e. dom C -> z e. dom F ) ) |
26 |
16 25
|
mpi |
|- ( ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) -> z e. dom F ) |
27 |
6 26
|
mtand |
|- ( z e. ( A \ dom F ) -> -. Pred ( R , ( A \ dom F ) , z ) = (/) ) |
28 |
27
|
nrex |
|- -. E. z e. ( A \ dom F ) Pred ( R , ( A \ dom F ) , z ) = (/) |
29 |
|
df-ne |
|- ( ( A \ dom F ) =/= (/) <-> -. ( A \ dom F ) = (/) ) |
30 |
|
difss |
|- ( A \ dom F ) C_ A |
31 |
1 2
|
tz6.26i |
|- ( ( ( A \ dom F ) C_ A /\ ( A \ dom F ) =/= (/) ) -> E. z e. ( A \ dom F ) Pred ( R , ( A \ dom F ) , z ) = (/) ) |
32 |
30 31
|
mpan |
|- ( ( A \ dom F ) =/= (/) -> E. z e. ( A \ dom F ) Pred ( R , ( A \ dom F ) , z ) = (/) ) |
33 |
29 32
|
sylbir |
|- ( -. ( A \ dom F ) = (/) -> E. z e. ( A \ dom F ) Pred ( R , ( A \ dom F ) , z ) = (/) ) |
34 |
28 33
|
mt3 |
|- ( A \ dom F ) = (/) |
35 |
|
ssdif0 |
|- ( A C_ dom F <-> ( A \ dom F ) = (/) ) |
36 |
34 35
|
mpbir |
|- A C_ dom F |
37 |
5 36
|
eqssi |
|- dom F = A |