| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wlkiswwlks2lem.f |
|- F = ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) |-> ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) ) |
| 2 |
|
wlkiswwlks2lem.e |
|- E = ( iEdg ` G ) |
| 3 |
1 2
|
wlkiswwlks2lem5 |
|- ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) -> ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E -> F e. Word dom E ) ) |
| 4 |
3
|
imp |
|- ( ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) -> F e. Word dom E ) |
| 5 |
1
|
wlkiswwlks2lem3 |
|- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> P : ( 0 ... ( # ` F ) ) --> V ) |
| 6 |
5
|
3adant1 |
|- ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) -> P : ( 0 ... ( # ` F ) ) --> V ) |
| 7 |
6
|
adantr |
|- ( ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) -> P : ( 0 ... ( # ` F ) ) --> V ) |
| 8 |
1 2
|
wlkiswwlks2lem4 |
|- ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) -> ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E -> A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
| 9 |
8
|
imp |
|- ( ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) -> A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) |
| 10 |
4 7 9
|
3jca |
|- ( ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) -> ( F e. Word dom E /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
| 11 |
10
|
ex |
|- ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) -> ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E -> ( F e. Word dom E /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) |