| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wlkiswwlks2lem.f | ⊢ 𝐹  =  ( 𝑥  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  ↦  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ ( 𝑥  +  1 ) ) } ) ) | 
						
							| 2 |  | wlkiswwlks2lem.e | ⊢ 𝐸  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 | 1 2 | wlkiswwlks2lem5 | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  →  𝐹  ∈  Word  dom  𝐸 ) ) | 
						
							| 4 | 3 | imp | ⊢ ( ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸 )  →  𝐹  ∈  Word  dom  𝐸 ) | 
						
							| 5 | 1 | wlkiswwlks2lem3 | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) | 
						
							| 6 | 5 | 3adant1 | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸 )  →  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) | 
						
							| 8 | 1 2 | wlkiswwlks2lem4 | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) ) | 
						
							| 9 | 8 | imp | ⊢ ( ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) | 
						
							| 10 | 4 7 9 | 3jca | ⊢ ( ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸 )  →  ( 𝐹  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) ) | 
						
							| 11 | 10 | ex | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  →  ( 𝐹  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) ) ) |