Metamath Proof Explorer


Theorem wlkiswwlks2lem6

Description: Lemma 6 for wlkiswwlks2 . (Contributed by Alexander van der Vekens, 21-Jul-2018) (Revised by AV, 10-Apr-2021)

Ref Expression
Hypotheses wlkiswwlks2lem.f F = x 0 ..^ P 1 E -1 P x P x + 1
wlkiswwlks2lem.e E = iEdg G
Assertion wlkiswwlks2lem6 G USHGraph P Word V 1 P i 0 ..^ P 1 P i P i + 1 ran E F Word dom E P : 0 F V i 0 ..^ F E F i = P i P i + 1

Proof

Step Hyp Ref Expression
1 wlkiswwlks2lem.f F = x 0 ..^ P 1 E -1 P x P x + 1
2 wlkiswwlks2lem.e E = iEdg G
3 1 2 wlkiswwlks2lem5 G USHGraph P Word V 1 P i 0 ..^ P 1 P i P i + 1 ran E F Word dom E
4 3 imp G USHGraph P Word V 1 P i 0 ..^ P 1 P i P i + 1 ran E F Word dom E
5 1 wlkiswwlks2lem3 P Word V 1 P P : 0 F V
6 5 3adant1 G USHGraph P Word V 1 P P : 0 F V
7 6 adantr G USHGraph P Word V 1 P i 0 ..^ P 1 P i P i + 1 ran E P : 0 F V
8 1 2 wlkiswwlks2lem4 G USHGraph P Word V 1 P i 0 ..^ P 1 P i P i + 1 ran E i 0 ..^ F E F i = P i P i + 1
9 8 imp G USHGraph P Word V 1 P i 0 ..^ P 1 P i P i + 1 ran E i 0 ..^ F E F i = P i P i + 1
10 4 7 9 3jca G USHGraph P Word V 1 P i 0 ..^ P 1 P i P i + 1 ran E F Word dom E P : 0 F V i 0 ..^ F E F i = P i P i + 1
11 10 ex G USHGraph P Word V 1 P i 0 ..^ P 1 P i P i + 1 ran E F Word dom E P : 0 F V i 0 ..^ F E F i = P i P i + 1