Step |
Hyp |
Ref |
Expression |
1 |
|
wunress.1 |
|- ( ph -> U e. WUni ) |
2 |
|
wunress.2 |
|- ( ph -> _om e. U ) |
3 |
|
wunress.3 |
|- ( ph -> W e. U ) |
4 |
|
eqid |
|- ( W |`s A ) = ( W |`s A ) |
5 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
6 |
4 5
|
ressval |
|- ( ( W e. U /\ A e. _V ) -> ( W |`s A ) = if ( ( Base ` W ) C_ A , W , ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) ) ) |
7 |
3 6
|
sylan |
|- ( ( ph /\ A e. _V ) -> ( W |`s A ) = if ( ( Base ` W ) C_ A , W , ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) ) ) |
8 |
|
df-base |
|- Base = Slot 1 |
9 |
1 2
|
wunndx |
|- ( ph -> ndx e. U ) |
10 |
8 1 9
|
wunstr |
|- ( ph -> ( Base ` ndx ) e. U ) |
11 |
|
incom |
|- ( A i^i ( Base ` W ) ) = ( ( Base ` W ) i^i A ) |
12 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
13 |
12 1 3
|
wunstr |
|- ( ph -> ( Base ` W ) e. U ) |
14 |
1 13
|
wunin |
|- ( ph -> ( ( Base ` W ) i^i A ) e. U ) |
15 |
11 14
|
eqeltrid |
|- ( ph -> ( A i^i ( Base ` W ) ) e. U ) |
16 |
1 10 15
|
wunop |
|- ( ph -> <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. e. U ) |
17 |
1 3 16
|
wunsets |
|- ( ph -> ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) e. U ) |
18 |
3 17
|
ifcld |
|- ( ph -> if ( ( Base ` W ) C_ A , W , ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) ) e. U ) |
19 |
18
|
adantr |
|- ( ( ph /\ A e. _V ) -> if ( ( Base ` W ) C_ A , W , ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) ) e. U ) |
20 |
7 19
|
eqeltrd |
|- ( ( ph /\ A e. _V ) -> ( W |`s A ) e. U ) |
21 |
20
|
ex |
|- ( ph -> ( A e. _V -> ( W |`s A ) e. U ) ) |
22 |
1
|
wun0 |
|- ( ph -> (/) e. U ) |
23 |
|
reldmress |
|- Rel dom |`s |
24 |
23
|
ovprc2 |
|- ( -. A e. _V -> ( W |`s A ) = (/) ) |
25 |
24
|
eleq1d |
|- ( -. A e. _V -> ( ( W |`s A ) e. U <-> (/) e. U ) ) |
26 |
22 25
|
syl5ibrcom |
|- ( ph -> ( -. A e. _V -> ( W |`s A ) e. U ) ) |
27 |
21 26
|
pm2.61d |
|- ( ph -> ( W |`s A ) e. U ) |