| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wwlksnextprop.x |
|- X = ( ( N + 1 ) WWalksN G ) |
| 2 |
|
wwlksnextprop.e |
|- E = ( Edg ` G ) |
| 3 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 4 |
3 2
|
wwlknp |
|- ( W e. ( ( N + 1 ) WWalksN G ) -> ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) /\ A. i e. ( 0 ..^ ( N + 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) |
| 5 |
|
fzonn0p1 |
|- ( N e. NN0 -> N e. ( 0 ..^ ( N + 1 ) ) ) |
| 6 |
5
|
adantl |
|- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) /\ N e. NN0 ) -> N e. ( 0 ..^ ( N + 1 ) ) ) |
| 7 |
|
fveq2 |
|- ( i = N -> ( W ` i ) = ( W ` N ) ) |
| 8 |
|
fvoveq1 |
|- ( i = N -> ( W ` ( i + 1 ) ) = ( W ` ( N + 1 ) ) ) |
| 9 |
7 8
|
preq12d |
|- ( i = N -> { ( W ` i ) , ( W ` ( i + 1 ) ) } = { ( W ` N ) , ( W ` ( N + 1 ) ) } ) |
| 10 |
9
|
eleq1d |
|- ( i = N -> ( { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E <-> { ( W ` N ) , ( W ` ( N + 1 ) ) } e. E ) ) |
| 11 |
10
|
rspcv |
|- ( N e. ( 0 ..^ ( N + 1 ) ) -> ( A. i e. ( 0 ..^ ( N + 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E -> { ( W ` N ) , ( W ` ( N + 1 ) ) } e. E ) ) |
| 12 |
6 11
|
syl |
|- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) /\ N e. NN0 ) -> ( A. i e. ( 0 ..^ ( N + 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E -> { ( W ` N ) , ( W ` ( N + 1 ) ) } e. E ) ) |
| 13 |
12
|
imp |
|- ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) /\ N e. NN0 ) /\ A. i e. ( 0 ..^ ( N + 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) -> { ( W ` N ) , ( W ` ( N + 1 ) ) } e. E ) |
| 14 |
|
simpll |
|- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) /\ N e. NN0 ) -> W e. Word ( Vtx ` G ) ) |
| 15 |
|
1zzd |
|- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) /\ N e. NN0 ) -> 1 e. ZZ ) |
| 16 |
|
lencl |
|- ( W e. Word ( Vtx ` G ) -> ( # ` W ) e. NN0 ) |
| 17 |
16
|
nn0zd |
|- ( W e. Word ( Vtx ` G ) -> ( # ` W ) e. ZZ ) |
| 18 |
17
|
ad2antrr |
|- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) /\ N e. NN0 ) -> ( # ` W ) e. ZZ ) |
| 19 |
|
peano2nn0 |
|- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
| 20 |
19
|
nn0zd |
|- ( N e. NN0 -> ( N + 1 ) e. ZZ ) |
| 21 |
20
|
adantl |
|- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) /\ N e. NN0 ) -> ( N + 1 ) e. ZZ ) |
| 22 |
|
nn0ge0 |
|- ( N e. NN0 -> 0 <_ N ) |
| 23 |
|
1red |
|- ( N e. NN0 -> 1 e. RR ) |
| 24 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
| 25 |
23 24
|
addge02d |
|- ( N e. NN0 -> ( 0 <_ N <-> 1 <_ ( N + 1 ) ) ) |
| 26 |
22 25
|
mpbid |
|- ( N e. NN0 -> 1 <_ ( N + 1 ) ) |
| 27 |
26
|
adantl |
|- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) /\ N e. NN0 ) -> 1 <_ ( N + 1 ) ) |
| 28 |
19
|
nn0red |
|- ( N e. NN0 -> ( N + 1 ) e. RR ) |
| 29 |
28
|
lep1d |
|- ( N e. NN0 -> ( N + 1 ) <_ ( ( N + 1 ) + 1 ) ) |
| 30 |
|
breq2 |
|- ( ( # ` W ) = ( ( N + 1 ) + 1 ) -> ( ( N + 1 ) <_ ( # ` W ) <-> ( N + 1 ) <_ ( ( N + 1 ) + 1 ) ) ) |
| 31 |
29 30
|
syl5ibrcom |
|- ( N e. NN0 -> ( ( # ` W ) = ( ( N + 1 ) + 1 ) -> ( N + 1 ) <_ ( # ` W ) ) ) |
| 32 |
31
|
a1i |
|- ( ( # ` W ) e. NN0 -> ( N e. NN0 -> ( ( # ` W ) = ( ( N + 1 ) + 1 ) -> ( N + 1 ) <_ ( # ` W ) ) ) ) |
| 33 |
32
|
com23 |
|- ( ( # ` W ) e. NN0 -> ( ( # ` W ) = ( ( N + 1 ) + 1 ) -> ( N e. NN0 -> ( N + 1 ) <_ ( # ` W ) ) ) ) |
| 34 |
16 33
|
syl |
|- ( W e. Word ( Vtx ` G ) -> ( ( # ` W ) = ( ( N + 1 ) + 1 ) -> ( N e. NN0 -> ( N + 1 ) <_ ( # ` W ) ) ) ) |
| 35 |
34
|
imp31 |
|- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) /\ N e. NN0 ) -> ( N + 1 ) <_ ( # ` W ) ) |
| 36 |
15 18 21 27 35
|
elfzd |
|- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) /\ N e. NN0 ) -> ( N + 1 ) e. ( 1 ... ( # ` W ) ) ) |
| 37 |
|
pfxfvlsw |
|- ( ( W e. Word ( Vtx ` G ) /\ ( N + 1 ) e. ( 1 ... ( # ` W ) ) ) -> ( lastS ` ( W prefix ( N + 1 ) ) ) = ( W ` ( ( N + 1 ) - 1 ) ) ) |
| 38 |
14 36 37
|
syl2anc |
|- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) /\ N e. NN0 ) -> ( lastS ` ( W prefix ( N + 1 ) ) ) = ( W ` ( ( N + 1 ) - 1 ) ) ) |
| 39 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
| 40 |
|
1cnd |
|- ( N e. NN0 -> 1 e. CC ) |
| 41 |
39 40
|
pncand |
|- ( N e. NN0 -> ( ( N + 1 ) - 1 ) = N ) |
| 42 |
41
|
fveq2d |
|- ( N e. NN0 -> ( W ` ( ( N + 1 ) - 1 ) ) = ( W ` N ) ) |
| 43 |
42
|
adantl |
|- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) /\ N e. NN0 ) -> ( W ` ( ( N + 1 ) - 1 ) ) = ( W ` N ) ) |
| 44 |
38 43
|
eqtrd |
|- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) /\ N e. NN0 ) -> ( lastS ` ( W prefix ( N + 1 ) ) ) = ( W ` N ) ) |
| 45 |
|
lsw |
|- ( W e. Word ( Vtx ` G ) -> ( lastS ` W ) = ( W ` ( ( # ` W ) - 1 ) ) ) |
| 46 |
45
|
ad2antrr |
|- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) /\ N e. NN0 ) -> ( lastS ` W ) = ( W ` ( ( # ` W ) - 1 ) ) ) |
| 47 |
|
fvoveq1 |
|- ( ( # ` W ) = ( ( N + 1 ) + 1 ) -> ( W ` ( ( # ` W ) - 1 ) ) = ( W ` ( ( ( N + 1 ) + 1 ) - 1 ) ) ) |
| 48 |
47
|
adantl |
|- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) -> ( W ` ( ( # ` W ) - 1 ) ) = ( W ` ( ( ( N + 1 ) + 1 ) - 1 ) ) ) |
| 49 |
19
|
nn0cnd |
|- ( N e. NN0 -> ( N + 1 ) e. CC ) |
| 50 |
49 40
|
pncand |
|- ( N e. NN0 -> ( ( ( N + 1 ) + 1 ) - 1 ) = ( N + 1 ) ) |
| 51 |
50
|
fveq2d |
|- ( N e. NN0 -> ( W ` ( ( ( N + 1 ) + 1 ) - 1 ) ) = ( W ` ( N + 1 ) ) ) |
| 52 |
48 51
|
sylan9eq |
|- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) /\ N e. NN0 ) -> ( W ` ( ( # ` W ) - 1 ) ) = ( W ` ( N + 1 ) ) ) |
| 53 |
46 52
|
eqtrd |
|- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) /\ N e. NN0 ) -> ( lastS ` W ) = ( W ` ( N + 1 ) ) ) |
| 54 |
44 53
|
preq12d |
|- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) /\ N e. NN0 ) -> { ( lastS ` ( W prefix ( N + 1 ) ) ) , ( lastS ` W ) } = { ( W ` N ) , ( W ` ( N + 1 ) ) } ) |
| 55 |
54
|
eleq1d |
|- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) /\ N e. NN0 ) -> ( { ( lastS ` ( W prefix ( N + 1 ) ) ) , ( lastS ` W ) } e. E <-> { ( W ` N ) , ( W ` ( N + 1 ) ) } e. E ) ) |
| 56 |
55
|
adantr |
|- ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) /\ N e. NN0 ) /\ A. i e. ( 0 ..^ ( N + 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) -> ( { ( lastS ` ( W prefix ( N + 1 ) ) ) , ( lastS ` W ) } e. E <-> { ( W ` N ) , ( W ` ( N + 1 ) ) } e. E ) ) |
| 57 |
13 56
|
mpbird |
|- ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) /\ N e. NN0 ) /\ A. i e. ( 0 ..^ ( N + 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) -> { ( lastS ` ( W prefix ( N + 1 ) ) ) , ( lastS ` W ) } e. E ) |
| 58 |
57
|
exp31 |
|- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) -> ( N e. NN0 -> ( A. i e. ( 0 ..^ ( N + 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E -> { ( lastS ` ( W prefix ( N + 1 ) ) ) , ( lastS ` W ) } e. E ) ) ) |
| 59 |
58
|
com23 |
|- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) -> ( A. i e. ( 0 ..^ ( N + 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E -> ( N e. NN0 -> { ( lastS ` ( W prefix ( N + 1 ) ) ) , ( lastS ` W ) } e. E ) ) ) |
| 60 |
59
|
3impia |
|- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) /\ A. i e. ( 0 ..^ ( N + 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) -> ( N e. NN0 -> { ( lastS ` ( W prefix ( N + 1 ) ) ) , ( lastS ` W ) } e. E ) ) |
| 61 |
4 60
|
syl |
|- ( W e. ( ( N + 1 ) WWalksN G ) -> ( N e. NN0 -> { ( lastS ` ( W prefix ( N + 1 ) ) ) , ( lastS ` W ) } e. E ) ) |
| 62 |
61 1
|
eleq2s |
|- ( W e. X -> ( N e. NN0 -> { ( lastS ` ( W prefix ( N + 1 ) ) ) , ( lastS ` W ) } e. E ) ) |
| 63 |
62
|
imp |
|- ( ( W e. X /\ N e. NN0 ) -> { ( lastS ` ( W prefix ( N + 1 ) ) ) , ( lastS ` W ) } e. E ) |