| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlksnextprop.x |  |-  X = ( ( N + 1 ) WWalksN G ) | 
						
							| 2 |  | wwlksnextprop.e |  |-  E = ( Edg ` G ) | 
						
							| 3 |  | wwlksnextprop.y |  |-  Y = { w e. ( N WWalksN G ) | ( w ` 0 ) = P } | 
						
							| 4 |  | eqidd |  |-  ( ( ( N e. NN0 /\ x e. X ) /\ ( x ` 0 ) = P ) -> ( x prefix ( N + 1 ) ) = ( x prefix ( N + 1 ) ) ) | 
						
							| 5 | 1 | wwlksnextproplem1 |  |-  ( ( x e. X /\ N e. NN0 ) -> ( ( x prefix ( N + 1 ) ) ` 0 ) = ( x ` 0 ) ) | 
						
							| 6 | 5 | ancoms |  |-  ( ( N e. NN0 /\ x e. X ) -> ( ( x prefix ( N + 1 ) ) ` 0 ) = ( x ` 0 ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ( N e. NN0 /\ x e. X ) /\ ( x ` 0 ) = P ) -> ( ( x prefix ( N + 1 ) ) ` 0 ) = ( x ` 0 ) ) | 
						
							| 8 |  | eqeq2 |  |-  ( ( x ` 0 ) = P -> ( ( ( x prefix ( N + 1 ) ) ` 0 ) = ( x ` 0 ) <-> ( ( x prefix ( N + 1 ) ) ` 0 ) = P ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( ( N e. NN0 /\ x e. X ) /\ ( x ` 0 ) = P ) -> ( ( ( x prefix ( N + 1 ) ) ` 0 ) = ( x ` 0 ) <-> ( ( x prefix ( N + 1 ) ) ` 0 ) = P ) ) | 
						
							| 10 | 7 9 | mpbid |  |-  ( ( ( N e. NN0 /\ x e. X ) /\ ( x ` 0 ) = P ) -> ( ( x prefix ( N + 1 ) ) ` 0 ) = P ) | 
						
							| 11 | 1 2 | wwlksnextproplem2 |  |-  ( ( x e. X /\ N e. NN0 ) -> { ( lastS ` ( x prefix ( N + 1 ) ) ) , ( lastS ` x ) } e. E ) | 
						
							| 12 | 11 | ancoms |  |-  ( ( N e. NN0 /\ x e. X ) -> { ( lastS ` ( x prefix ( N + 1 ) ) ) , ( lastS ` x ) } e. E ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ( N e. NN0 /\ x e. X ) /\ ( x ` 0 ) = P ) -> { ( lastS ` ( x prefix ( N + 1 ) ) ) , ( lastS ` x ) } e. E ) | 
						
							| 14 |  | simpr |  |-  ( ( N e. NN0 /\ x e. X ) -> x e. X ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ( N e. NN0 /\ x e. X ) /\ ( x ` 0 ) = P ) -> x e. X ) | 
						
							| 16 |  | simpr |  |-  ( ( ( N e. NN0 /\ x e. X ) /\ ( x ` 0 ) = P ) -> ( x ` 0 ) = P ) | 
						
							| 17 |  | simpll |  |-  ( ( ( N e. NN0 /\ x e. X ) /\ ( x ` 0 ) = P ) -> N e. NN0 ) | 
						
							| 18 | 1 2 3 | wwlksnextproplem3 |  |-  ( ( x e. X /\ ( x ` 0 ) = P /\ N e. NN0 ) -> ( x prefix ( N + 1 ) ) e. Y ) | 
						
							| 19 | 15 16 17 18 | syl3anc |  |-  ( ( ( N e. NN0 /\ x e. X ) /\ ( x ` 0 ) = P ) -> ( x prefix ( N + 1 ) ) e. Y ) | 
						
							| 20 |  | eqeq2 |  |-  ( y = ( x prefix ( N + 1 ) ) -> ( ( x prefix ( N + 1 ) ) = y <-> ( x prefix ( N + 1 ) ) = ( x prefix ( N + 1 ) ) ) ) | 
						
							| 21 |  | fveq1 |  |-  ( y = ( x prefix ( N + 1 ) ) -> ( y ` 0 ) = ( ( x prefix ( N + 1 ) ) ` 0 ) ) | 
						
							| 22 | 21 | eqeq1d |  |-  ( y = ( x prefix ( N + 1 ) ) -> ( ( y ` 0 ) = P <-> ( ( x prefix ( N + 1 ) ) ` 0 ) = P ) ) | 
						
							| 23 |  | fveq2 |  |-  ( y = ( x prefix ( N + 1 ) ) -> ( lastS ` y ) = ( lastS ` ( x prefix ( N + 1 ) ) ) ) | 
						
							| 24 | 23 | preq1d |  |-  ( y = ( x prefix ( N + 1 ) ) -> { ( lastS ` y ) , ( lastS ` x ) } = { ( lastS ` ( x prefix ( N + 1 ) ) ) , ( lastS ` x ) } ) | 
						
							| 25 | 24 | eleq1d |  |-  ( y = ( x prefix ( N + 1 ) ) -> ( { ( lastS ` y ) , ( lastS ` x ) } e. E <-> { ( lastS ` ( x prefix ( N + 1 ) ) ) , ( lastS ` x ) } e. E ) ) | 
						
							| 26 | 20 22 25 | 3anbi123d |  |-  ( y = ( x prefix ( N + 1 ) ) -> ( ( ( x prefix ( N + 1 ) ) = y /\ ( y ` 0 ) = P /\ { ( lastS ` y ) , ( lastS ` x ) } e. E ) <-> ( ( x prefix ( N + 1 ) ) = ( x prefix ( N + 1 ) ) /\ ( ( x prefix ( N + 1 ) ) ` 0 ) = P /\ { ( lastS ` ( x prefix ( N + 1 ) ) ) , ( lastS ` x ) } e. E ) ) ) | 
						
							| 27 | 26 | adantl |  |-  ( ( ( ( N e. NN0 /\ x e. X ) /\ ( x ` 0 ) = P ) /\ y = ( x prefix ( N + 1 ) ) ) -> ( ( ( x prefix ( N + 1 ) ) = y /\ ( y ` 0 ) = P /\ { ( lastS ` y ) , ( lastS ` x ) } e. E ) <-> ( ( x prefix ( N + 1 ) ) = ( x prefix ( N + 1 ) ) /\ ( ( x prefix ( N + 1 ) ) ` 0 ) = P /\ { ( lastS ` ( x prefix ( N + 1 ) ) ) , ( lastS ` x ) } e. E ) ) ) | 
						
							| 28 | 19 27 | rspcedv |  |-  ( ( ( N e. NN0 /\ x e. X ) /\ ( x ` 0 ) = P ) -> ( ( ( x prefix ( N + 1 ) ) = ( x prefix ( N + 1 ) ) /\ ( ( x prefix ( N + 1 ) ) ` 0 ) = P /\ { ( lastS ` ( x prefix ( N + 1 ) ) ) , ( lastS ` x ) } e. E ) -> E. y e. Y ( ( x prefix ( N + 1 ) ) = y /\ ( y ` 0 ) = P /\ { ( lastS ` y ) , ( lastS ` x ) } e. E ) ) ) | 
						
							| 29 | 4 10 13 28 | mp3and |  |-  ( ( ( N e. NN0 /\ x e. X ) /\ ( x ` 0 ) = P ) -> E. y e. Y ( ( x prefix ( N + 1 ) ) = y /\ ( y ` 0 ) = P /\ { ( lastS ` y ) , ( lastS ` x ) } e. E ) ) | 
						
							| 30 | 29 | ex |  |-  ( ( N e. NN0 /\ x e. X ) -> ( ( x ` 0 ) = P -> E. y e. Y ( ( x prefix ( N + 1 ) ) = y /\ ( y ` 0 ) = P /\ { ( lastS ` y ) , ( lastS ` x ) } e. E ) ) ) | 
						
							| 31 | 21 | eqcoms |  |-  ( ( x prefix ( N + 1 ) ) = y -> ( y ` 0 ) = ( ( x prefix ( N + 1 ) ) ` 0 ) ) | 
						
							| 32 | 31 | eqeq1d |  |-  ( ( x prefix ( N + 1 ) ) = y -> ( ( y ` 0 ) = P <-> ( ( x prefix ( N + 1 ) ) ` 0 ) = P ) ) | 
						
							| 33 | 5 | eqcomd |  |-  ( ( x e. X /\ N e. NN0 ) -> ( x ` 0 ) = ( ( x prefix ( N + 1 ) ) ` 0 ) ) | 
						
							| 34 | 33 | ancoms |  |-  ( ( N e. NN0 /\ x e. X ) -> ( x ` 0 ) = ( ( x prefix ( N + 1 ) ) ` 0 ) ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ( N e. NN0 /\ x e. X ) /\ y e. Y ) -> ( x ` 0 ) = ( ( x prefix ( N + 1 ) ) ` 0 ) ) | 
						
							| 36 |  | eqeq2 |  |-  ( P = ( ( x prefix ( N + 1 ) ) ` 0 ) -> ( ( x ` 0 ) = P <-> ( x ` 0 ) = ( ( x prefix ( N + 1 ) ) ` 0 ) ) ) | 
						
							| 37 | 36 | eqcoms |  |-  ( ( ( x prefix ( N + 1 ) ) ` 0 ) = P -> ( ( x ` 0 ) = P <-> ( x ` 0 ) = ( ( x prefix ( N + 1 ) ) ` 0 ) ) ) | 
						
							| 38 | 35 37 | imbitrrid |  |-  ( ( ( x prefix ( N + 1 ) ) ` 0 ) = P -> ( ( ( N e. NN0 /\ x e. X ) /\ y e. Y ) -> ( x ` 0 ) = P ) ) | 
						
							| 39 | 32 38 | biimtrdi |  |-  ( ( x prefix ( N + 1 ) ) = y -> ( ( y ` 0 ) = P -> ( ( ( N e. NN0 /\ x e. X ) /\ y e. Y ) -> ( x ` 0 ) = P ) ) ) | 
						
							| 40 | 39 | imp |  |-  ( ( ( x prefix ( N + 1 ) ) = y /\ ( y ` 0 ) = P ) -> ( ( ( N e. NN0 /\ x e. X ) /\ y e. Y ) -> ( x ` 0 ) = P ) ) | 
						
							| 41 | 40 | 3adant3 |  |-  ( ( ( x prefix ( N + 1 ) ) = y /\ ( y ` 0 ) = P /\ { ( lastS ` y ) , ( lastS ` x ) } e. E ) -> ( ( ( N e. NN0 /\ x e. X ) /\ y e. Y ) -> ( x ` 0 ) = P ) ) | 
						
							| 42 | 41 | com12 |  |-  ( ( ( N e. NN0 /\ x e. X ) /\ y e. Y ) -> ( ( ( x prefix ( N + 1 ) ) = y /\ ( y ` 0 ) = P /\ { ( lastS ` y ) , ( lastS ` x ) } e. E ) -> ( x ` 0 ) = P ) ) | 
						
							| 43 | 42 | rexlimdva |  |-  ( ( N e. NN0 /\ x e. X ) -> ( E. y e. Y ( ( x prefix ( N + 1 ) ) = y /\ ( y ` 0 ) = P /\ { ( lastS ` y ) , ( lastS ` x ) } e. E ) -> ( x ` 0 ) = P ) ) | 
						
							| 44 | 30 43 | impbid |  |-  ( ( N e. NN0 /\ x e. X ) -> ( ( x ` 0 ) = P <-> E. y e. Y ( ( x prefix ( N + 1 ) ) = y /\ ( y ` 0 ) = P /\ { ( lastS ` y ) , ( lastS ` x ) } e. E ) ) ) | 
						
							| 45 | 44 | rabbidva |  |-  ( N e. NN0 -> { x e. X | ( x ` 0 ) = P } = { x e. X | E. y e. Y ( ( x prefix ( N + 1 ) ) = y /\ ( y ` 0 ) = P /\ { ( lastS ` y ) , ( lastS ` x ) } e. E ) } ) |