| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlksnextprop.x |  |-  X = ( ( N + 1 ) WWalksN G ) | 
						
							| 2 |  | wwlknbp1 |  |-  ( W e. ( ( N + 1 ) WWalksN G ) -> ( ( N + 1 ) e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) ) | 
						
							| 3 |  | simpl2 |  |-  ( ( ( ( N + 1 ) e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) /\ N e. NN0 ) -> W e. Word ( Vtx ` G ) ) | 
						
							| 4 |  | peano2nn0 |  |-  ( ( N + 1 ) e. NN0 -> ( ( N + 1 ) + 1 ) e. NN0 ) | 
						
							| 5 | 4 | 3ad2ant1 |  |-  ( ( ( N + 1 ) e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) -> ( ( N + 1 ) + 1 ) e. NN0 ) | 
						
							| 6 |  | eleq1 |  |-  ( ( # ` W ) = ( ( N + 1 ) + 1 ) -> ( ( # ` W ) e. NN0 <-> ( ( N + 1 ) + 1 ) e. NN0 ) ) | 
						
							| 7 | 6 | 3ad2ant3 |  |-  ( ( ( N + 1 ) e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) -> ( ( # ` W ) e. NN0 <-> ( ( N + 1 ) + 1 ) e. NN0 ) ) | 
						
							| 8 | 5 7 | mpbird |  |-  ( ( ( N + 1 ) e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) -> ( # ` W ) e. NN0 ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ( ( N + 1 ) e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) /\ N e. NN0 ) -> ( # ` W ) e. NN0 ) | 
						
							| 10 |  | simpr |  |-  ( ( ( ( N + 1 ) e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) /\ N e. NN0 ) -> N e. NN0 ) | 
						
							| 11 |  | nn0re |  |-  ( ( N + 1 ) e. NN0 -> ( N + 1 ) e. RR ) | 
						
							| 12 | 11 | lep1d |  |-  ( ( N + 1 ) e. NN0 -> ( N + 1 ) <_ ( ( N + 1 ) + 1 ) ) | 
						
							| 13 | 12 | 3ad2ant1 |  |-  ( ( ( N + 1 ) e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) -> ( N + 1 ) <_ ( ( N + 1 ) + 1 ) ) | 
						
							| 14 |  | breq2 |  |-  ( ( # ` W ) = ( ( N + 1 ) + 1 ) -> ( ( N + 1 ) <_ ( # ` W ) <-> ( N + 1 ) <_ ( ( N + 1 ) + 1 ) ) ) | 
						
							| 15 | 14 | 3ad2ant3 |  |-  ( ( ( N + 1 ) e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) -> ( ( N + 1 ) <_ ( # ` W ) <-> ( N + 1 ) <_ ( ( N + 1 ) + 1 ) ) ) | 
						
							| 16 | 13 15 | mpbird |  |-  ( ( ( N + 1 ) e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) -> ( N + 1 ) <_ ( # ` W ) ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ( ( N + 1 ) e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) /\ N e. NN0 ) -> ( N + 1 ) <_ ( # ` W ) ) | 
						
							| 18 |  | nn0p1elfzo |  |-  ( ( N e. NN0 /\ ( # ` W ) e. NN0 /\ ( N + 1 ) <_ ( # ` W ) ) -> N e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 19 | 10 9 17 18 | syl3anc |  |-  ( ( ( ( N + 1 ) e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) /\ N e. NN0 ) -> N e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 20 |  | fz0add1fz1 |  |-  ( ( ( # ` W ) e. NN0 /\ N e. ( 0 ..^ ( # ` W ) ) ) -> ( N + 1 ) e. ( 1 ... ( # ` W ) ) ) | 
						
							| 21 | 9 19 20 | syl2anc |  |-  ( ( ( ( N + 1 ) e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) /\ N e. NN0 ) -> ( N + 1 ) e. ( 1 ... ( # ` W ) ) ) | 
						
							| 22 | 3 21 | jca |  |-  ( ( ( ( N + 1 ) e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) /\ N e. NN0 ) -> ( W e. Word ( Vtx ` G ) /\ ( N + 1 ) e. ( 1 ... ( # ` W ) ) ) ) | 
						
							| 23 | 22 | ex |  |-  ( ( ( N + 1 ) e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) -> ( N e. NN0 -> ( W e. Word ( Vtx ` G ) /\ ( N + 1 ) e. ( 1 ... ( # ` W ) ) ) ) ) | 
						
							| 24 | 2 23 | syl |  |-  ( W e. ( ( N + 1 ) WWalksN G ) -> ( N e. NN0 -> ( W e. Word ( Vtx ` G ) /\ ( N + 1 ) e. ( 1 ... ( # ` W ) ) ) ) ) | 
						
							| 25 | 24 1 | eleq2s |  |-  ( W e. X -> ( N e. NN0 -> ( W e. Word ( Vtx ` G ) /\ ( N + 1 ) e. ( 1 ... ( # ` W ) ) ) ) ) | 
						
							| 26 | 25 | imp |  |-  ( ( W e. X /\ N e. NN0 ) -> ( W e. Word ( Vtx ` G ) /\ ( N + 1 ) e. ( 1 ... ( # ` W ) ) ) ) | 
						
							| 27 |  | pfxfv0 |  |-  ( ( W e. Word ( Vtx ` G ) /\ ( N + 1 ) e. ( 1 ... ( # ` W ) ) ) -> ( ( W prefix ( N + 1 ) ) ` 0 ) = ( W ` 0 ) ) | 
						
							| 28 | 26 27 | syl |  |-  ( ( W e. X /\ N e. NN0 ) -> ( ( W prefix ( N + 1 ) ) ` 0 ) = ( W ` 0 ) ) |