Metamath Proof Explorer


Theorem wwlksnextproplem1

Description: Lemma 1 for wwlksnextprop . (Contributed by Alexander van der Vekens, 31-Jul-2018) (Revised by AV, 20-Apr-2021) (Revised by AV, 29-Oct-2022)

Ref Expression
Hypothesis wwlksnextprop.x X=N+1WWalksNG
Assertion wwlksnextproplem1 WXN0WprefixN+10=W0

Proof

Step Hyp Ref Expression
1 wwlksnextprop.x X=N+1WWalksNG
2 wwlknbp1 WN+1WWalksNGN+10WWordVtxGW=N+1+1
3 simpl2 N+10WWordVtxGW=N+1+1N0WWordVtxG
4 peano2nn0 N+10N+1+10
5 4 3ad2ant1 N+10WWordVtxGW=N+1+1N+1+10
6 eleq1 W=N+1+1W0N+1+10
7 6 3ad2ant3 N+10WWordVtxGW=N+1+1W0N+1+10
8 5 7 mpbird N+10WWordVtxGW=N+1+1W0
9 8 adantr N+10WWordVtxGW=N+1+1N0W0
10 simpr N+10WWordVtxGW=N+1+1N0N0
11 nn0re N+10N+1
12 11 lep1d N+10N+1N+1+1
13 12 3ad2ant1 N+10WWordVtxGW=N+1+1N+1N+1+1
14 breq2 W=N+1+1N+1WN+1N+1+1
15 14 3ad2ant3 N+10WWordVtxGW=N+1+1N+1WN+1N+1+1
16 13 15 mpbird N+10WWordVtxGW=N+1+1N+1W
17 16 adantr N+10WWordVtxGW=N+1+1N0N+1W
18 nn0p1elfzo N0W0N+1WN0..^W
19 10 9 17 18 syl3anc N+10WWordVtxGW=N+1+1N0N0..^W
20 fz0add1fz1 W0N0..^WN+11W
21 9 19 20 syl2anc N+10WWordVtxGW=N+1+1N0N+11W
22 3 21 jca N+10WWordVtxGW=N+1+1N0WWordVtxGN+11W
23 22 ex N+10WWordVtxGW=N+1+1N0WWordVtxGN+11W
24 2 23 syl WN+1WWalksNGN0WWordVtxGN+11W
25 24 1 eleq2s WXN0WWordVtxGN+11W
26 25 imp WXN0WWordVtxGN+11W
27 pfxfv0 WWordVtxGN+11WWprefixN+10=W0
28 26 27 syl WXN0WprefixN+10=W0