Step |
Hyp |
Ref |
Expression |
1 |
|
wwlksnextprop.x |
⊢ 𝑋 = ( ( 𝑁 + 1 ) WWalksN 𝐺 ) |
2 |
|
wwlknbp1 |
⊢ ( 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) → ( ( 𝑁 + 1 ) ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ) ) |
3 |
|
simpl2 |
⊢ ( ( ( ( 𝑁 + 1 ) ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ) ∧ 𝑁 ∈ ℕ0 ) → 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) |
4 |
|
peano2nn0 |
⊢ ( ( 𝑁 + 1 ) ∈ ℕ0 → ( ( 𝑁 + 1 ) + 1 ) ∈ ℕ0 ) |
5 |
4
|
3ad2ant1 |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ) → ( ( 𝑁 + 1 ) + 1 ) ∈ ℕ0 ) |
6 |
|
eleq1 |
⊢ ( ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) → ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ↔ ( ( 𝑁 + 1 ) + 1 ) ∈ ℕ0 ) ) |
7 |
6
|
3ad2ant3 |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ) → ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ↔ ( ( 𝑁 + 1 ) + 1 ) ∈ ℕ0 ) ) |
8 |
5 7
|
mpbird |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
9 |
8
|
adantr |
⊢ ( ( ( ( 𝑁 + 1 ) ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ) ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
10 |
|
simpr |
⊢ ( ( ( ( 𝑁 + 1 ) ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) |
11 |
|
nn0re |
⊢ ( ( 𝑁 + 1 ) ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℝ ) |
12 |
11
|
lep1d |
⊢ ( ( 𝑁 + 1 ) ∈ ℕ0 → ( 𝑁 + 1 ) ≤ ( ( 𝑁 + 1 ) + 1 ) ) |
13 |
12
|
3ad2ant1 |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ) → ( 𝑁 + 1 ) ≤ ( ( 𝑁 + 1 ) + 1 ) ) |
14 |
|
breq2 |
⊢ ( ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) → ( ( 𝑁 + 1 ) ≤ ( ♯ ‘ 𝑊 ) ↔ ( 𝑁 + 1 ) ≤ ( ( 𝑁 + 1 ) + 1 ) ) ) |
15 |
14
|
3ad2ant3 |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ) → ( ( 𝑁 + 1 ) ≤ ( ♯ ‘ 𝑊 ) ↔ ( 𝑁 + 1 ) ≤ ( ( 𝑁 + 1 ) + 1 ) ) ) |
16 |
13 15
|
mpbird |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ) → ( 𝑁 + 1 ) ≤ ( ♯ ‘ 𝑊 ) ) |
17 |
16
|
adantr |
⊢ ( ( ( ( 𝑁 + 1 ) ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 1 ) ≤ ( ♯ ‘ 𝑊 ) ) |
18 |
|
nn0p1elfzo |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ ( 𝑁 + 1 ) ≤ ( ♯ ‘ 𝑊 ) ) → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
19 |
10 9 17 18
|
syl3anc |
⊢ ( ( ( ( 𝑁 + 1 ) ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
20 |
|
fz0add1fz1 |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑁 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) |
21 |
9 19 20
|
syl2anc |
⊢ ( ( ( ( 𝑁 + 1 ) ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) |
22 |
3 21
|
jca |
⊢ ( ( ( ( 𝑁 + 1 ) ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑁 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) |
23 |
22
|
ex |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ) → ( 𝑁 ∈ ℕ0 → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑁 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) ) |
24 |
2 23
|
syl |
⊢ ( 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) → ( 𝑁 ∈ ℕ0 → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑁 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) ) |
25 |
24 1
|
eleq2s |
⊢ ( 𝑊 ∈ 𝑋 → ( 𝑁 ∈ ℕ0 → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑁 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) ) |
26 |
25
|
imp |
⊢ ( ( 𝑊 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑁 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) |
27 |
|
pfxfv0 |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑁 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 prefix ( 𝑁 + 1 ) ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ) |
28 |
26 27
|
syl |
⊢ ( ( 𝑊 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑊 prefix ( 𝑁 + 1 ) ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ) |