| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlksnextprop.x | ⊢ 𝑋  =  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) | 
						
							| 2 |  | wwlknbp1 | ⊢ ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  →  ( ( 𝑁  +  1 )  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) ) ) | 
						
							| 3 |  | simpl2 | ⊢ ( ( ( ( 𝑁  +  1 )  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  ∧  𝑁  ∈  ℕ0 )  →  𝑊  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 4 |  | peano2nn0 | ⊢ ( ( 𝑁  +  1 )  ∈  ℕ0  →  ( ( 𝑁  +  1 )  +  1 )  ∈  ℕ0 ) | 
						
							| 5 | 4 | 3ad2ant1 | ⊢ ( ( ( 𝑁  +  1 )  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  →  ( ( 𝑁  +  1 )  +  1 )  ∈  ℕ0 ) | 
						
							| 6 |  | eleq1 | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  →  ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ↔  ( ( 𝑁  +  1 )  +  1 )  ∈  ℕ0 ) ) | 
						
							| 7 | 6 | 3ad2ant3 | ⊢ ( ( ( 𝑁  +  1 )  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  →  ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ↔  ( ( 𝑁  +  1 )  +  1 )  ∈  ℕ0 ) ) | 
						
							| 8 | 5 7 | mpbird | ⊢ ( ( ( 𝑁  +  1 )  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( ( ( 𝑁  +  1 )  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  ∧  𝑁  ∈  ℕ0 )  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 10 |  | simpr | ⊢ ( ( ( ( 𝑁  +  1 )  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 11 |  | nn0re | ⊢ ( ( 𝑁  +  1 )  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℝ ) | 
						
							| 12 | 11 | lep1d | ⊢ ( ( 𝑁  +  1 )  ∈  ℕ0  →  ( 𝑁  +  1 )  ≤  ( ( 𝑁  +  1 )  +  1 ) ) | 
						
							| 13 | 12 | 3ad2ant1 | ⊢ ( ( ( 𝑁  +  1 )  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  →  ( 𝑁  +  1 )  ≤  ( ( 𝑁  +  1 )  +  1 ) ) | 
						
							| 14 |  | breq2 | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  →  ( ( 𝑁  +  1 )  ≤  ( ♯ ‘ 𝑊 )  ↔  ( 𝑁  +  1 )  ≤  ( ( 𝑁  +  1 )  +  1 ) ) ) | 
						
							| 15 | 14 | 3ad2ant3 | ⊢ ( ( ( 𝑁  +  1 )  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  →  ( ( 𝑁  +  1 )  ≤  ( ♯ ‘ 𝑊 )  ↔  ( 𝑁  +  1 )  ≤  ( ( 𝑁  +  1 )  +  1 ) ) ) | 
						
							| 16 | 13 15 | mpbird | ⊢ ( ( ( 𝑁  +  1 )  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  →  ( 𝑁  +  1 )  ≤  ( ♯ ‘ 𝑊 ) ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( ( ( 𝑁  +  1 )  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑁  +  1 )  ≤  ( ♯ ‘ 𝑊 ) ) | 
						
							| 18 |  | nn0p1elfzo | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  ( 𝑁  +  1 )  ≤  ( ♯ ‘ 𝑊 ) )  →  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 19 | 10 9 17 18 | syl3anc | ⊢ ( ( ( ( 𝑁  +  1 )  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 20 |  | fz0add1fz1 | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑁  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 21 | 9 19 20 | syl2anc | ⊢ ( ( ( ( 𝑁  +  1 )  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑁  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 22 | 3 21 | jca | ⊢ ( ( ( ( 𝑁  +  1 )  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑁  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 23 | 22 | ex | ⊢ ( ( ( 𝑁  +  1 )  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑁  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 24 | 2 23 | syl | ⊢ ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑁  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 25 | 24 1 | eleq2s | ⊢ ( 𝑊  ∈  𝑋  →  ( 𝑁  ∈  ℕ0  →  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑁  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 26 | 25 | imp | ⊢ ( ( 𝑊  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑁  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 27 |  | pfxfv0 | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑁  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑊  prefix  ( 𝑁  +  1 ) ) ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 28 | 26 27 | syl | ⊢ ( ( 𝑊  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝑊  prefix  ( 𝑁  +  1 ) ) ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) |