| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlksnextprop.x | ⊢ 𝑋  =  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) | 
						
							| 2 |  | wwlksnextprop.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | wwlksnextprop.y | ⊢ 𝑌  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } | 
						
							| 4 |  | eqidd | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑥 ‘ 0 )  =  𝑃 )  →  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) | 
						
							| 5 | 1 | wwlksnextproplem1 | ⊢ ( ( 𝑥  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝑥  prefix  ( 𝑁  +  1 ) ) ‘ 0 )  =  ( 𝑥 ‘ 0 ) ) | 
						
							| 6 | 5 | ancoms | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝑥  prefix  ( 𝑁  +  1 ) ) ‘ 0 )  =  ( 𝑥 ‘ 0 ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑥 ‘ 0 )  =  𝑃 )  →  ( ( 𝑥  prefix  ( 𝑁  +  1 ) ) ‘ 0 )  =  ( 𝑥 ‘ 0 ) ) | 
						
							| 8 |  | eqeq2 | ⊢ ( ( 𝑥 ‘ 0 )  =  𝑃  →  ( ( ( 𝑥  prefix  ( 𝑁  +  1 ) ) ‘ 0 )  =  ( 𝑥 ‘ 0 )  ↔  ( ( 𝑥  prefix  ( 𝑁  +  1 ) ) ‘ 0 )  =  𝑃 ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑥 ‘ 0 )  =  𝑃 )  →  ( ( ( 𝑥  prefix  ( 𝑁  +  1 ) ) ‘ 0 )  =  ( 𝑥 ‘ 0 )  ↔  ( ( 𝑥  prefix  ( 𝑁  +  1 ) ) ‘ 0 )  =  𝑃 ) ) | 
						
							| 10 | 7 9 | mpbid | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑥 ‘ 0 )  =  𝑃 )  →  ( ( 𝑥  prefix  ( 𝑁  +  1 ) ) ‘ 0 )  =  𝑃 ) | 
						
							| 11 | 1 2 | wwlksnextproplem2 | ⊢ ( ( 𝑥  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  →  { ( lastS ‘ ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) | 
						
							| 12 | 11 | ancoms | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  𝑋 )  →  { ( lastS ‘ ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑥 ‘ 0 )  =  𝑃 )  →  { ( lastS ‘ ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) | 
						
							| 14 |  | simpr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  𝑋 )  →  𝑥  ∈  𝑋 ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑥 ‘ 0 )  =  𝑃 )  →  𝑥  ∈  𝑋 ) | 
						
							| 16 |  | simpr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑥 ‘ 0 )  =  𝑃 )  →  ( 𝑥 ‘ 0 )  =  𝑃 ) | 
						
							| 17 |  | simpll | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑥 ‘ 0 )  =  𝑃 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 18 | 1 2 3 | wwlksnextproplem3 | ⊢ ( ( 𝑥  ∈  𝑋  ∧  ( 𝑥 ‘ 0 )  =  𝑃  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑥  prefix  ( 𝑁  +  1 ) )  ∈  𝑌 ) | 
						
							| 19 | 15 16 17 18 | syl3anc | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑥 ‘ 0 )  =  𝑃 )  →  ( 𝑥  prefix  ( 𝑁  +  1 ) )  ∈  𝑌 ) | 
						
							| 20 |  | eqeq2 | ⊢ ( 𝑦  =  ( 𝑥  prefix  ( 𝑁  +  1 ) )  →  ( ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑦  ↔  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) ) | 
						
							| 21 |  | fveq1 | ⊢ ( 𝑦  =  ( 𝑥  prefix  ( 𝑁  +  1 ) )  →  ( 𝑦 ‘ 0 )  =  ( ( 𝑥  prefix  ( 𝑁  +  1 ) ) ‘ 0 ) ) | 
						
							| 22 | 21 | eqeq1d | ⊢ ( 𝑦  =  ( 𝑥  prefix  ( 𝑁  +  1 ) )  →  ( ( 𝑦 ‘ 0 )  =  𝑃  ↔  ( ( 𝑥  prefix  ( 𝑁  +  1 ) ) ‘ 0 )  =  𝑃 ) ) | 
						
							| 23 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝑥  prefix  ( 𝑁  +  1 ) )  →  ( lastS ‘ 𝑦 )  =  ( lastS ‘ ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) ) | 
						
							| 24 | 23 | preq1d | ⊢ ( 𝑦  =  ( 𝑥  prefix  ( 𝑁  +  1 ) )  →  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑥 ) }  =  { ( lastS ‘ ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) ,  ( lastS ‘ 𝑥 ) } ) | 
						
							| 25 | 24 | eleq1d | ⊢ ( 𝑦  =  ( 𝑥  prefix  ( 𝑁  +  1 ) )  →  ( { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸  ↔  { ( lastS ‘ ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) ) | 
						
							| 26 | 20 22 25 | 3anbi123d | ⊢ ( 𝑦  =  ( 𝑥  prefix  ( 𝑁  +  1 ) )  →  ( ( ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 )  ↔  ( ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  ( 𝑥  prefix  ( 𝑁  +  1 ) )  ∧  ( ( 𝑥  prefix  ( 𝑁  +  1 ) ) ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) ) ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑥 ‘ 0 )  =  𝑃 )  ∧  𝑦  =  ( 𝑥  prefix  ( 𝑁  +  1 ) ) )  →  ( ( ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 )  ↔  ( ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  ( 𝑥  prefix  ( 𝑁  +  1 ) )  ∧  ( ( 𝑥  prefix  ( 𝑁  +  1 ) ) ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) ) ) | 
						
							| 28 | 19 27 | rspcedv | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑥 ‘ 0 )  =  𝑃 )  →  ( ( ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  ( 𝑥  prefix  ( 𝑁  +  1 ) )  ∧  ( ( 𝑥  prefix  ( 𝑁  +  1 ) ) ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 )  →  ∃ 𝑦  ∈  𝑌 ( ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) ) ) | 
						
							| 29 | 4 10 13 28 | mp3and | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑥 ‘ 0 )  =  𝑃 )  →  ∃ 𝑦  ∈  𝑌 ( ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) ) | 
						
							| 30 | 29 | ex | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝑥 ‘ 0 )  =  𝑃  →  ∃ 𝑦  ∈  𝑌 ( ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) ) ) | 
						
							| 31 | 21 | eqcoms | ⊢ ( ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑦  →  ( 𝑦 ‘ 0 )  =  ( ( 𝑥  prefix  ( 𝑁  +  1 ) ) ‘ 0 ) ) | 
						
							| 32 | 31 | eqeq1d | ⊢ ( ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑦  →  ( ( 𝑦 ‘ 0 )  =  𝑃  ↔  ( ( 𝑥  prefix  ( 𝑁  +  1 ) ) ‘ 0 )  =  𝑃 ) ) | 
						
							| 33 | 5 | eqcomd | ⊢ ( ( 𝑥  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑥 ‘ 0 )  =  ( ( 𝑥  prefix  ( 𝑁  +  1 ) ) ‘ 0 ) ) | 
						
							| 34 | 33 | ancoms | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  𝑋 )  →  ( 𝑥 ‘ 0 )  =  ( ( 𝑥  prefix  ( 𝑁  +  1 ) ) ‘ 0 ) ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑌 )  →  ( 𝑥 ‘ 0 )  =  ( ( 𝑥  prefix  ( 𝑁  +  1 ) ) ‘ 0 ) ) | 
						
							| 36 |  | eqeq2 | ⊢ ( 𝑃  =  ( ( 𝑥  prefix  ( 𝑁  +  1 ) ) ‘ 0 )  →  ( ( 𝑥 ‘ 0 )  =  𝑃  ↔  ( 𝑥 ‘ 0 )  =  ( ( 𝑥  prefix  ( 𝑁  +  1 ) ) ‘ 0 ) ) ) | 
						
							| 37 | 36 | eqcoms | ⊢ ( ( ( 𝑥  prefix  ( 𝑁  +  1 ) ) ‘ 0 )  =  𝑃  →  ( ( 𝑥 ‘ 0 )  =  𝑃  ↔  ( 𝑥 ‘ 0 )  =  ( ( 𝑥  prefix  ( 𝑁  +  1 ) ) ‘ 0 ) ) ) | 
						
							| 38 | 35 37 | imbitrrid | ⊢ ( ( ( 𝑥  prefix  ( 𝑁  +  1 ) ) ‘ 0 )  =  𝑃  →  ( ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑌 )  →  ( 𝑥 ‘ 0 )  =  𝑃 ) ) | 
						
							| 39 | 32 38 | biimtrdi | ⊢ ( ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑦  →  ( ( 𝑦 ‘ 0 )  =  𝑃  →  ( ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑌 )  →  ( 𝑥 ‘ 0 )  =  𝑃 ) ) ) | 
						
							| 40 | 39 | imp | ⊢ ( ( ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃 )  →  ( ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑌 )  →  ( 𝑥 ‘ 0 )  =  𝑃 ) ) | 
						
							| 41 | 40 | 3adant3 | ⊢ ( ( ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 )  →  ( ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑌 )  →  ( 𝑥 ‘ 0 )  =  𝑃 ) ) | 
						
							| 42 | 41 | com12 | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑌 )  →  ( ( ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 )  →  ( 𝑥 ‘ 0 )  =  𝑃 ) ) | 
						
							| 43 | 42 | rexlimdva | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  𝑋 )  →  ( ∃ 𝑦  ∈  𝑌 ( ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 )  →  ( 𝑥 ‘ 0 )  =  𝑃 ) ) | 
						
							| 44 | 30 43 | impbid | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝑥 ‘ 0 )  =  𝑃  ↔  ∃ 𝑦  ∈  𝑌 ( ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) ) ) | 
						
							| 45 | 44 | rabbidva | ⊢ ( 𝑁  ∈  ℕ0  →  { 𝑥  ∈  𝑋  ∣  ( 𝑥 ‘ 0 )  =  𝑃 }  =  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑌 ( ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) } ) |