| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlksnextprop.x | ⊢ 𝑋  =  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) | 
						
							| 2 |  | wwlksnextprop.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | wwlksnextprop.y | ⊢ 𝑌  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } | 
						
							| 4 |  | peano2nn0 | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℕ0 ) | 
						
							| 5 |  | iswwlksn | ⊢ ( ( 𝑁  +  1 )  ∈  ℕ0  →  ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ↔  ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) ) ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ↔  ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) ) ) ) | 
						
							| 7 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 8 | 7 | wwlkbp | ⊢ ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  →  ( 𝐺  ∈  V  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 9 |  | lencl | ⊢ ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 10 |  | eqcom | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ↔  ( ( 𝑁  +  1 )  +  1 )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 11 |  | nn0cn | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  →  ( ♯ ‘ 𝑊 )  ∈  ℂ ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ♯ ‘ 𝑊 )  ∈  ℂ ) | 
						
							| 13 |  | 1cnd | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  1  ∈  ℂ ) | 
						
							| 14 |  | nn0cn | ⊢ ( ( 𝑁  +  1 )  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℂ ) | 
						
							| 15 | 4 14 | syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℂ ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑁  +  1 )  ∈  ℂ ) | 
						
							| 17 |  | subadd2 | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℂ  ∧  1  ∈  ℂ  ∧  ( 𝑁  +  1 )  ∈  ℂ )  →  ( ( ( ♯ ‘ 𝑊 )  −  1 )  =  ( 𝑁  +  1 )  ↔  ( ( 𝑁  +  1 )  +  1 )  =  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 18 | 17 | bicomd | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℂ  ∧  1  ∈  ℂ  ∧  ( 𝑁  +  1 )  ∈  ℂ )  →  ( ( ( 𝑁  +  1 )  +  1 )  =  ( ♯ ‘ 𝑊 )  ↔  ( ( ♯ ‘ 𝑊 )  −  1 )  =  ( 𝑁  +  1 ) ) ) | 
						
							| 19 | 12 13 16 18 | syl3anc | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( 𝑁  +  1 )  +  1 )  =  ( ♯ ‘ 𝑊 )  ↔  ( ( ♯ ‘ 𝑊 )  −  1 )  =  ( 𝑁  +  1 ) ) ) | 
						
							| 20 | 10 19 | bitrid | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ↔  ( ( ♯ ‘ 𝑊 )  −  1 )  =  ( 𝑁  +  1 ) ) ) | 
						
							| 21 |  | eqcom | ⊢ ( ( ( ♯ ‘ 𝑊 )  −  1 )  =  ( 𝑁  +  1 )  ↔  ( 𝑁  +  1 )  =  ( ( ♯ ‘ 𝑊 )  −  1 ) ) | 
						
							| 22 | 21 | biimpi | ⊢ ( ( ( ♯ ‘ 𝑊 )  −  1 )  =  ( 𝑁  +  1 )  →  ( 𝑁  +  1 )  =  ( ( ♯ ‘ 𝑊 )  −  1 ) ) | 
						
							| 23 | 20 22 | biimtrdi | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  →  ( 𝑁  +  1 )  =  ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 24 | 23 | ex | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  →  ( 𝑁  ∈  ℕ0  →  ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  →  ( 𝑁  +  1 )  =  ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) ) | 
						
							| 25 | 24 | com23 | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  =  ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) ) | 
						
							| 26 | 9 25 | syl | ⊢ ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  =  ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) ) | 
						
							| 27 | 8 26 | simpl2im | ⊢ ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  →  ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  =  ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) ) | 
						
							| 28 | 27 | imp31 | ⊢ ( ( ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑁  +  1 )  =  ( ( ♯ ‘ 𝑊 )  −  1 ) ) | 
						
							| 29 | 28 | oveq2d | ⊢ ( ( ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  ( 𝑊  prefix  ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 30 |  | simpll | ⊢ ( ( ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  ∧  𝑁  ∈  ℕ0 )  →  𝑊  ∈  ( WWalks ‘ 𝐺 ) ) | 
						
							| 31 |  | nn0ge0 | ⊢ ( 𝑁  ∈  ℕ0  →  0  ≤  𝑁 ) | 
						
							| 32 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 33 | 32 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  2  ∈  ℝ ) | 
						
							| 34 |  | nn0re | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℝ ) | 
						
							| 35 | 33 34 | addge02d | ⊢ ( 𝑁  ∈  ℕ0  →  ( 0  ≤  𝑁  ↔  2  ≤  ( 𝑁  +  2 ) ) ) | 
						
							| 36 | 31 35 | mpbid | ⊢ ( 𝑁  ∈  ℕ0  →  2  ≤  ( 𝑁  +  2 ) ) | 
						
							| 37 |  | nn0cn | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℂ ) | 
						
							| 38 |  | 1cnd | ⊢ ( 𝑁  ∈  ℕ0  →  1  ∈  ℂ ) | 
						
							| 39 | 37 38 38 | addassd | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑁  +  1 )  +  1 )  =  ( 𝑁  +  ( 1  +  1 ) ) ) | 
						
							| 40 |  | 1p1e2 | ⊢ ( 1  +  1 )  =  2 | 
						
							| 41 | 40 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  ( 1  +  1 )  =  2 ) | 
						
							| 42 | 41 | oveq2d | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  ( 1  +  1 ) )  =  ( 𝑁  +  2 ) ) | 
						
							| 43 | 39 42 | eqtrd | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑁  +  1 )  +  1 )  =  ( 𝑁  +  2 ) ) | 
						
							| 44 | 36 43 | breqtrrd | ⊢ ( 𝑁  ∈  ℕ0  →  2  ≤  ( ( 𝑁  +  1 )  +  1 ) ) | 
						
							| 45 | 44 | adantl | ⊢ ( ( ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  ∧  𝑁  ∈  ℕ0 )  →  2  ≤  ( ( 𝑁  +  1 )  +  1 ) ) | 
						
							| 46 |  | breq2 | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  →  ( 2  ≤  ( ♯ ‘ 𝑊 )  ↔  2  ≤  ( ( 𝑁  +  1 )  +  1 ) ) ) | 
						
							| 47 | 46 | ad2antlr | ⊢ ( ( ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  ∧  𝑁  ∈  ℕ0 )  →  ( 2  ≤  ( ♯ ‘ 𝑊 )  ↔  2  ≤  ( ( 𝑁  +  1 )  +  1 ) ) ) | 
						
							| 48 | 45 47 | mpbird | ⊢ ( ( ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  ∧  𝑁  ∈  ℕ0 )  →  2  ≤  ( ♯ ‘ 𝑊 ) ) | 
						
							| 49 |  | wwlksm1edg | ⊢ ( ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ∧  2  ≤  ( ♯ ‘ 𝑊 ) )  →  ( 𝑊  prefix  ( ( ♯ ‘ 𝑊 )  −  1 ) )  ∈  ( WWalks ‘ 𝐺 ) ) | 
						
							| 50 | 30 48 49 | syl2anc | ⊢ ( ( ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑊  prefix  ( ( ♯ ‘ 𝑊 )  −  1 ) )  ∈  ( WWalks ‘ 𝐺 ) ) | 
						
							| 51 | 29 50 | eqeltrd | ⊢ ( ( ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( WWalks ‘ 𝐺 ) ) | 
						
							| 52 | 51 | expcom | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  →  ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( WWalks ‘ 𝐺 ) ) ) | 
						
							| 53 | 6 52 | sylbid | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  →  ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( WWalks ‘ 𝐺 ) ) ) | 
						
							| 54 | 53 | com12 | ⊢ ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( WWalks ‘ 𝐺 ) ) ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑃 )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( WWalks ‘ 𝐺 ) ) ) | 
						
							| 56 | 55 | imp | ⊢ ( ( ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑃 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( WWalks ‘ 𝐺 ) ) | 
						
							| 57 | 7 2 | wwlknp | ⊢ ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  →  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) ) | 
						
							| 58 |  | simpll | ⊢ ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  ∧  𝑁  ∈  ℕ0 )  →  𝑊  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 59 |  | peano2nn0 | ⊢ ( ( 𝑁  +  1 )  ∈  ℕ0  →  ( ( 𝑁  +  1 )  +  1 )  ∈  ℕ0 ) | 
						
							| 60 | 4 59 | syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑁  +  1 )  +  1 )  ∈  ℕ0 ) | 
						
							| 61 |  | peano2re | ⊢ ( 𝑁  ∈  ℝ  →  ( 𝑁  +  1 )  ∈  ℝ ) | 
						
							| 62 | 34 61 | syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℝ ) | 
						
							| 63 | 62 | lep1d | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ≤  ( ( 𝑁  +  1 )  +  1 ) ) | 
						
							| 64 |  | elfz2nn0 | ⊢ ( ( 𝑁  +  1 )  ∈  ( 0 ... ( ( 𝑁  +  1 )  +  1 ) )  ↔  ( ( 𝑁  +  1 )  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  +  1 )  ∈  ℕ0  ∧  ( 𝑁  +  1 )  ≤  ( ( 𝑁  +  1 )  +  1 ) ) ) | 
						
							| 65 | 4 60 63 64 | syl3anbrc | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ( 0 ... ( ( 𝑁  +  1 )  +  1 ) ) ) | 
						
							| 66 | 65 | adantl | ⊢ ( ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑁  +  1 )  ∈  ( 0 ... ( ( 𝑁  +  1 )  +  1 ) ) ) | 
						
							| 67 |  | oveq2 | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  →  ( 0 ... ( ♯ ‘ 𝑊 ) )  =  ( 0 ... ( ( 𝑁  +  1 )  +  1 ) ) ) | 
						
							| 68 | 67 | adantr | ⊢ ( ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ∧  𝑁  ∈  ℕ0 )  →  ( 0 ... ( ♯ ‘ 𝑊 ) )  =  ( 0 ... ( ( 𝑁  +  1 )  +  1 ) ) ) | 
						
							| 69 | 66 68 | eleqtrrd | ⊢ ( ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑁  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 70 | 69 | adantll | ⊢ ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑁  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 71 | 58 70 | jca | ⊢ ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑁  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 72 | 71 | ex | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑁  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 73 | 72 | 3adant3 | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑁  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 74 | 57 73 | syl | ⊢ ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑁  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 75 | 74 | adantr | ⊢ ( ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑃 )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑁  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 76 | 75 | imp | ⊢ ( ( ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑃 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑁  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 77 |  | pfxlen | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑁  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ♯ ‘ ( 𝑊  prefix  ( 𝑁  +  1 ) ) )  =  ( 𝑁  +  1 ) ) | 
						
							| 78 | 76 77 | syl | ⊢ ( ( ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑃 )  ∧  𝑁  ∈  ℕ0 )  →  ( ♯ ‘ ( 𝑊  prefix  ( 𝑁  +  1 ) ) )  =  ( 𝑁  +  1 ) ) | 
						
							| 79 | 56 78 | jca | ⊢ ( ( ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑃 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ ( 𝑊  prefix  ( 𝑁  +  1 ) ) )  =  ( 𝑁  +  1 ) ) ) | 
						
							| 80 |  | iswwlksn | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( 𝑁  WWalksN  𝐺 )  ↔  ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ ( 𝑊  prefix  ( 𝑁  +  1 ) ) )  =  ( 𝑁  +  1 ) ) ) ) | 
						
							| 81 | 80 | adantl | ⊢ ( ( ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑃 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( 𝑁  WWalksN  𝐺 )  ↔  ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ ( 𝑊  prefix  ( 𝑁  +  1 ) ) )  =  ( 𝑁  +  1 ) ) ) ) | 
						
							| 82 | 79 81 | mpbird | ⊢ ( ( ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑃 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( 𝑁  WWalksN  𝐺 ) ) | 
						
							| 83 | 82 | exp31 | ⊢ ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  →  ( ( 𝑊 ‘ 0 )  =  𝑃  →  ( 𝑁  ∈  ℕ0  →  ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( 𝑁  WWalksN  𝐺 ) ) ) ) | 
						
							| 84 | 83 1 | eleq2s | ⊢ ( 𝑊  ∈  𝑋  →  ( ( 𝑊 ‘ 0 )  =  𝑃  →  ( 𝑁  ∈  ℕ0  →  ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( 𝑁  WWalksN  𝐺 ) ) ) ) | 
						
							| 85 | 84 | 3imp | ⊢ ( ( 𝑊  ∈  𝑋  ∧  ( 𝑊 ‘ 0 )  =  𝑃  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( 𝑁  WWalksN  𝐺 ) ) | 
						
							| 86 | 1 | wwlksnextproplem1 | ⊢ ( ( 𝑊  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝑊  prefix  ( 𝑁  +  1 ) ) ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 87 | 86 | 3adant2 | ⊢ ( ( 𝑊  ∈  𝑋  ∧  ( 𝑊 ‘ 0 )  =  𝑃  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝑊  prefix  ( 𝑁  +  1 ) ) ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 88 |  | simp2 | ⊢ ( ( 𝑊  ∈  𝑋  ∧  ( 𝑊 ‘ 0 )  =  𝑃  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑊 ‘ 0 )  =  𝑃 ) | 
						
							| 89 | 87 88 | eqtrd | ⊢ ( ( 𝑊  ∈  𝑋  ∧  ( 𝑊 ‘ 0 )  =  𝑃  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝑊  prefix  ( 𝑁  +  1 ) ) ‘ 0 )  =  𝑃 ) | 
						
							| 90 |  | fveq1 | ⊢ ( 𝑤  =  ( 𝑊  prefix  ( 𝑁  +  1 ) )  →  ( 𝑤 ‘ 0 )  =  ( ( 𝑊  prefix  ( 𝑁  +  1 ) ) ‘ 0 ) ) | 
						
							| 91 | 90 | eqeq1d | ⊢ ( 𝑤  =  ( 𝑊  prefix  ( 𝑁  +  1 ) )  →  ( ( 𝑤 ‘ 0 )  =  𝑃  ↔  ( ( 𝑊  prefix  ( 𝑁  +  1 ) ) ‘ 0 )  =  𝑃 ) ) | 
						
							| 92 | 91 3 | elrab2 | ⊢ ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  𝑌  ↔  ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊  prefix  ( 𝑁  +  1 ) ) ‘ 0 )  =  𝑃 ) ) | 
						
							| 93 | 85 89 92 | sylanbrc | ⊢ ( ( 𝑊  ∈  𝑋  ∧  ( 𝑊 ‘ 0 )  =  𝑃  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  𝑌 ) |