| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1l |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> A e. RR* ) |
| 2 |
|
xnegcl |
|- ( A e. RR* -> -e A e. RR* ) |
| 3 |
1 2
|
syl |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e A e. RR* ) |
| 4 |
|
simp1r |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> A =/= +oo ) |
| 5 |
|
pnfxr |
|- +oo e. RR* |
| 6 |
|
xneg11 |
|- ( ( A e. RR* /\ +oo e. RR* ) -> ( -e A = -e +oo <-> A = +oo ) ) |
| 7 |
1 5 6
|
sylancl |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( -e A = -e +oo <-> A = +oo ) ) |
| 8 |
7
|
necon3bid |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( -e A =/= -e +oo <-> A =/= +oo ) ) |
| 9 |
4 8
|
mpbird |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e A =/= -e +oo ) |
| 10 |
|
xnegpnf |
|- -e +oo = -oo |
| 11 |
10
|
a1i |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e +oo = -oo ) |
| 12 |
9 11
|
neeqtrd |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e A =/= -oo ) |
| 13 |
|
simp2l |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> B e. RR* ) |
| 14 |
|
xnegcl |
|- ( B e. RR* -> -e B e. RR* ) |
| 15 |
13 14
|
syl |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e B e. RR* ) |
| 16 |
|
simp2r |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> B =/= +oo ) |
| 17 |
|
xneg11 |
|- ( ( B e. RR* /\ +oo e. RR* ) -> ( -e B = -e +oo <-> B = +oo ) ) |
| 18 |
13 5 17
|
sylancl |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( -e B = -e +oo <-> B = +oo ) ) |
| 19 |
18
|
necon3bid |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( -e B =/= -e +oo <-> B =/= +oo ) ) |
| 20 |
16 19
|
mpbird |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e B =/= -e +oo ) |
| 21 |
20 11
|
neeqtrd |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e B =/= -oo ) |
| 22 |
|
simp3l |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> C e. RR* ) |
| 23 |
|
xnegcl |
|- ( C e. RR* -> -e C e. RR* ) |
| 24 |
22 23
|
syl |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e C e. RR* ) |
| 25 |
|
simp3r |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> C =/= +oo ) |
| 26 |
|
xneg11 |
|- ( ( C e. RR* /\ +oo e. RR* ) -> ( -e C = -e +oo <-> C = +oo ) ) |
| 27 |
22 5 26
|
sylancl |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( -e C = -e +oo <-> C = +oo ) ) |
| 28 |
27
|
necon3bid |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( -e C =/= -e +oo <-> C =/= +oo ) ) |
| 29 |
25 28
|
mpbird |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e C =/= -e +oo ) |
| 30 |
29 11
|
neeqtrd |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e C =/= -oo ) |
| 31 |
|
xaddass |
|- ( ( ( -e A e. RR* /\ -e A =/= -oo ) /\ ( -e B e. RR* /\ -e B =/= -oo ) /\ ( -e C e. RR* /\ -e C =/= -oo ) ) -> ( ( -e A +e -e B ) +e -e C ) = ( -e A +e ( -e B +e -e C ) ) ) |
| 32 |
3 12 15 21 24 30 31
|
syl222anc |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( ( -e A +e -e B ) +e -e C ) = ( -e A +e ( -e B +e -e C ) ) ) |
| 33 |
|
xnegdi |
|- ( ( A e. RR* /\ B e. RR* ) -> -e ( A +e B ) = ( -e A +e -e B ) ) |
| 34 |
1 13 33
|
syl2anc |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e ( A +e B ) = ( -e A +e -e B ) ) |
| 35 |
34
|
oveq1d |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( -e ( A +e B ) +e -e C ) = ( ( -e A +e -e B ) +e -e C ) ) |
| 36 |
|
xnegdi |
|- ( ( B e. RR* /\ C e. RR* ) -> -e ( B +e C ) = ( -e B +e -e C ) ) |
| 37 |
13 22 36
|
syl2anc |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e ( B +e C ) = ( -e B +e -e C ) ) |
| 38 |
37
|
oveq2d |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( -e A +e -e ( B +e C ) ) = ( -e A +e ( -e B +e -e C ) ) ) |
| 39 |
32 35 38
|
3eqtr4d |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( -e ( A +e B ) +e -e C ) = ( -e A +e -e ( B +e C ) ) ) |
| 40 |
|
xaddcl |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A +e B ) e. RR* ) |
| 41 |
1 13 40
|
syl2anc |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( A +e B ) e. RR* ) |
| 42 |
|
xnegdi |
|- ( ( ( A +e B ) e. RR* /\ C e. RR* ) -> -e ( ( A +e B ) +e C ) = ( -e ( A +e B ) +e -e C ) ) |
| 43 |
41 22 42
|
syl2anc |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e ( ( A +e B ) +e C ) = ( -e ( A +e B ) +e -e C ) ) |
| 44 |
|
xaddcl |
|- ( ( B e. RR* /\ C e. RR* ) -> ( B +e C ) e. RR* ) |
| 45 |
13 22 44
|
syl2anc |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( B +e C ) e. RR* ) |
| 46 |
|
xnegdi |
|- ( ( A e. RR* /\ ( B +e C ) e. RR* ) -> -e ( A +e ( B +e C ) ) = ( -e A +e -e ( B +e C ) ) ) |
| 47 |
1 45 46
|
syl2anc |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e ( A +e ( B +e C ) ) = ( -e A +e -e ( B +e C ) ) ) |
| 48 |
39 43 47
|
3eqtr4d |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e ( ( A +e B ) +e C ) = -e ( A +e ( B +e C ) ) ) |
| 49 |
|
xaddcl |
|- ( ( ( A +e B ) e. RR* /\ C e. RR* ) -> ( ( A +e B ) +e C ) e. RR* ) |
| 50 |
41 22 49
|
syl2anc |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( ( A +e B ) +e C ) e. RR* ) |
| 51 |
|
xaddcl |
|- ( ( A e. RR* /\ ( B +e C ) e. RR* ) -> ( A +e ( B +e C ) ) e. RR* ) |
| 52 |
1 45 51
|
syl2anc |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( A +e ( B +e C ) ) e. RR* ) |
| 53 |
|
xneg11 |
|- ( ( ( ( A +e B ) +e C ) e. RR* /\ ( A +e ( B +e C ) ) e. RR* ) -> ( -e ( ( A +e B ) +e C ) = -e ( A +e ( B +e C ) ) <-> ( ( A +e B ) +e C ) = ( A +e ( B +e C ) ) ) ) |
| 54 |
50 52 53
|
syl2anc |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( -e ( ( A +e B ) +e C ) = -e ( A +e ( B +e C ) ) <-> ( ( A +e B ) +e C ) = ( A +e ( B +e C ) ) ) ) |
| 55 |
48 54
|
mpbid |
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( ( A +e B ) +e C ) = ( A +e ( B +e C ) ) ) |