Description: Associativity of extended real addition. See xaddass for notes on the hypotheses. (Contributed by Mario Carneiro, 20-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | xaddass2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l | |
|
2 | xnegcl | |
|
3 | 1 2 | syl | |
4 | simp1r | |
|
5 | pnfxr | |
|
6 | xneg11 | |
|
7 | 1 5 6 | sylancl | |
8 | 7 | necon3bid | |
9 | 4 8 | mpbird | |
10 | xnegpnf | |
|
11 | 10 | a1i | |
12 | 9 11 | neeqtrd | |
13 | simp2l | |
|
14 | xnegcl | |
|
15 | 13 14 | syl | |
16 | simp2r | |
|
17 | xneg11 | |
|
18 | 13 5 17 | sylancl | |
19 | 18 | necon3bid | |
20 | 16 19 | mpbird | |
21 | 20 11 | neeqtrd | |
22 | simp3l | |
|
23 | xnegcl | |
|
24 | 22 23 | syl | |
25 | simp3r | |
|
26 | xneg11 | |
|
27 | 22 5 26 | sylancl | |
28 | 27 | necon3bid | |
29 | 25 28 | mpbird | |
30 | 29 11 | neeqtrd | |
31 | xaddass | |
|
32 | 3 12 15 21 24 30 31 | syl222anc | |
33 | xnegdi | |
|
34 | 1 13 33 | syl2anc | |
35 | 34 | oveq1d | |
36 | xnegdi | |
|
37 | 13 22 36 | syl2anc | |
38 | 37 | oveq2d | |
39 | 32 35 38 | 3eqtr4d | |
40 | xaddcl | |
|
41 | 1 13 40 | syl2anc | |
42 | xnegdi | |
|
43 | 41 22 42 | syl2anc | |
44 | xaddcl | |
|
45 | 13 22 44 | syl2anc | |
46 | xnegdi | |
|
47 | 1 45 46 | syl2anc | |
48 | 39 43 47 | 3eqtr4d | |
49 | xaddcl | |
|
50 | 41 22 49 | syl2anc | |
51 | xaddcl | |
|
52 | 1 45 51 | syl2anc | |
53 | xneg11 | |
|
54 | 50 52 53 | syl2anc | |
55 | 48 54 | mpbid | |