Metamath Proof Explorer


Theorem xrsnsgrp

Description: The "additive group" of the extended reals is not a semigroup. (Contributed by AV, 30-Jan-2020)

Ref Expression
Assertion xrsnsgrp
|- RR*s e/ Smgrp

Proof

Step Hyp Ref Expression
1 1xr
 |-  1 e. RR*
2 mnfxr
 |-  -oo e. RR*
3 pnfxr
 |-  +oo e. RR*
4 1 2 3 3pm3.2i
 |-  ( 1 e. RR* /\ -oo e. RR* /\ +oo e. RR* )
5 xaddcom
 |-  ( ( 1 e. RR* /\ -oo e. RR* ) -> ( 1 +e -oo ) = ( -oo +e 1 ) )
6 1 2 5 mp2an
 |-  ( 1 +e -oo ) = ( -oo +e 1 )
7 1re
 |-  1 e. RR
8 renepnf
 |-  ( 1 e. RR -> 1 =/= +oo )
9 7 8 ax-mp
 |-  1 =/= +oo
10 xaddmnf2
 |-  ( ( 1 e. RR* /\ 1 =/= +oo ) -> ( -oo +e 1 ) = -oo )
11 1 9 10 mp2an
 |-  ( -oo +e 1 ) = -oo
12 6 11 eqtri
 |-  ( 1 +e -oo ) = -oo
13 12 oveq1i
 |-  ( ( 1 +e -oo ) +e +oo ) = ( -oo +e +oo )
14 mnfaddpnf
 |-  ( -oo +e +oo ) = 0
15 13 14 eqtri
 |-  ( ( 1 +e -oo ) +e +oo ) = 0
16 0ne1
 |-  0 =/= 1
17 15 16 eqnetri
 |-  ( ( 1 +e -oo ) +e +oo ) =/= 1
18 14 oveq2i
 |-  ( 1 +e ( -oo +e +oo ) ) = ( 1 +e 0 )
19 xaddid1
 |-  ( 1 e. RR* -> ( 1 +e 0 ) = 1 )
20 1 19 ax-mp
 |-  ( 1 +e 0 ) = 1
21 18 20 eqtri
 |-  ( 1 +e ( -oo +e +oo ) ) = 1
22 17 21 neeqtrri
 |-  ( ( 1 +e -oo ) +e +oo ) =/= ( 1 +e ( -oo +e +oo ) )
23 xrsbas
 |-  RR* = ( Base ` RR*s )
24 xrsadd
 |-  +e = ( +g ` RR*s )
25 23 24 isnsgrp
 |-  ( ( 1 e. RR* /\ -oo e. RR* /\ +oo e. RR* ) -> ( ( ( 1 +e -oo ) +e +oo ) =/= ( 1 +e ( -oo +e +oo ) ) -> RR*s e/ Smgrp ) )
26 4 22 25 mp2
 |-  RR*s e/ Smgrp