| Step |
Hyp |
Ref |
Expression |
| 1 |
|
young2d.0 |
|- ( ph -> A e. RR+ ) |
| 2 |
|
young2d.1 |
|- ( ph -> P e. RR+ ) |
| 3 |
|
young2d.2 |
|- ( ph -> B e. RR+ ) |
| 4 |
|
young2d.3 |
|- ( ph -> Q e. RR+ ) |
| 5 |
|
young2d.4 |
|- ( ph -> ( ( 1 / P ) + ( 1 / Q ) ) = 1 ) |
| 6 |
2
|
rpred |
|- ( ph -> P e. RR ) |
| 7 |
1 6
|
rpcxpcld |
|- ( ph -> ( A ^c P ) e. RR+ ) |
| 8 |
2
|
rpreccld |
|- ( ph -> ( 1 / P ) e. RR+ ) |
| 9 |
4
|
rpred |
|- ( ph -> Q e. RR ) |
| 10 |
3 9
|
rpcxpcld |
|- ( ph -> ( B ^c Q ) e. RR+ ) |
| 11 |
4
|
rpreccld |
|- ( ph -> ( 1 / Q ) e. RR+ ) |
| 12 |
7 8 10 11 5
|
amgmw2d |
|- ( ph -> ( ( ( A ^c P ) ^c ( 1 / P ) ) x. ( ( B ^c Q ) ^c ( 1 / Q ) ) ) <_ ( ( ( A ^c P ) x. ( 1 / P ) ) + ( ( B ^c Q ) x. ( 1 / Q ) ) ) ) |
| 13 |
2
|
rpcnd |
|- ( ph -> P e. CC ) |
| 14 |
2
|
rpne0d |
|- ( ph -> P =/= 0 ) |
| 15 |
13 14
|
recidd |
|- ( ph -> ( P x. ( 1 / P ) ) = 1 ) |
| 16 |
15
|
oveq2d |
|- ( ph -> ( A ^c ( P x. ( 1 / P ) ) ) = ( A ^c 1 ) ) |
| 17 |
13 14
|
reccld |
|- ( ph -> ( 1 / P ) e. CC ) |
| 18 |
1 6 17
|
cxpmuld |
|- ( ph -> ( A ^c ( P x. ( 1 / P ) ) ) = ( ( A ^c P ) ^c ( 1 / P ) ) ) |
| 19 |
1
|
rpcnd |
|- ( ph -> A e. CC ) |
| 20 |
19
|
cxp1d |
|- ( ph -> ( A ^c 1 ) = A ) |
| 21 |
16 18 20
|
3eqtr3d |
|- ( ph -> ( ( A ^c P ) ^c ( 1 / P ) ) = A ) |
| 22 |
4
|
rpcnd |
|- ( ph -> Q e. CC ) |
| 23 |
4
|
rpne0d |
|- ( ph -> Q =/= 0 ) |
| 24 |
22 23
|
recidd |
|- ( ph -> ( Q x. ( 1 / Q ) ) = 1 ) |
| 25 |
24
|
oveq2d |
|- ( ph -> ( B ^c ( Q x. ( 1 / Q ) ) ) = ( B ^c 1 ) ) |
| 26 |
22 23
|
reccld |
|- ( ph -> ( 1 / Q ) e. CC ) |
| 27 |
3 9 26
|
cxpmuld |
|- ( ph -> ( B ^c ( Q x. ( 1 / Q ) ) ) = ( ( B ^c Q ) ^c ( 1 / Q ) ) ) |
| 28 |
3
|
rpcnd |
|- ( ph -> B e. CC ) |
| 29 |
28
|
cxp1d |
|- ( ph -> ( B ^c 1 ) = B ) |
| 30 |
25 27 29
|
3eqtr3d |
|- ( ph -> ( ( B ^c Q ) ^c ( 1 / Q ) ) = B ) |
| 31 |
21 30
|
oveq12d |
|- ( ph -> ( ( ( A ^c P ) ^c ( 1 / P ) ) x. ( ( B ^c Q ) ^c ( 1 / Q ) ) ) = ( A x. B ) ) |
| 32 |
7
|
rpcnd |
|- ( ph -> ( A ^c P ) e. CC ) |
| 33 |
32 13 14
|
divrecd |
|- ( ph -> ( ( A ^c P ) / P ) = ( ( A ^c P ) x. ( 1 / P ) ) ) |
| 34 |
10
|
rpcnd |
|- ( ph -> ( B ^c Q ) e. CC ) |
| 35 |
34 22 23
|
divrecd |
|- ( ph -> ( ( B ^c Q ) / Q ) = ( ( B ^c Q ) x. ( 1 / Q ) ) ) |
| 36 |
33 35
|
oveq12d |
|- ( ph -> ( ( ( A ^c P ) / P ) + ( ( B ^c Q ) / Q ) ) = ( ( ( A ^c P ) x. ( 1 / P ) ) + ( ( B ^c Q ) x. ( 1 / Q ) ) ) ) |
| 37 |
36
|
eqcomd |
|- ( ph -> ( ( ( A ^c P ) x. ( 1 / P ) ) + ( ( B ^c Q ) x. ( 1 / Q ) ) ) = ( ( ( A ^c P ) / P ) + ( ( B ^c Q ) / Q ) ) ) |
| 38 |
12 31 37
|
3brtr3d |
|- ( ph -> ( A x. B ) <_ ( ( ( A ^c P ) / P ) + ( ( B ^c Q ) / Q ) ) ) |