| Step | Hyp | Ref | Expression | 
						
							| 1 |  | young2d.0 |  |-  ( ph -> A e. RR+ ) | 
						
							| 2 |  | young2d.1 |  |-  ( ph -> P e. RR+ ) | 
						
							| 3 |  | young2d.2 |  |-  ( ph -> B e. RR+ ) | 
						
							| 4 |  | young2d.3 |  |-  ( ph -> Q e. RR+ ) | 
						
							| 5 |  | young2d.4 |  |-  ( ph -> ( ( 1 / P ) + ( 1 / Q ) ) = 1 ) | 
						
							| 6 | 2 | rpred |  |-  ( ph -> P e. RR ) | 
						
							| 7 | 1 6 | rpcxpcld |  |-  ( ph -> ( A ^c P ) e. RR+ ) | 
						
							| 8 | 2 | rpreccld |  |-  ( ph -> ( 1 / P ) e. RR+ ) | 
						
							| 9 | 4 | rpred |  |-  ( ph -> Q e. RR ) | 
						
							| 10 | 3 9 | rpcxpcld |  |-  ( ph -> ( B ^c Q ) e. RR+ ) | 
						
							| 11 | 4 | rpreccld |  |-  ( ph -> ( 1 / Q ) e. RR+ ) | 
						
							| 12 | 7 8 10 11 5 | amgmw2d |  |-  ( ph -> ( ( ( A ^c P ) ^c ( 1 / P ) ) x. ( ( B ^c Q ) ^c ( 1 / Q ) ) ) <_ ( ( ( A ^c P ) x. ( 1 / P ) ) + ( ( B ^c Q ) x. ( 1 / Q ) ) ) ) | 
						
							| 13 | 2 | rpcnd |  |-  ( ph -> P e. CC ) | 
						
							| 14 | 2 | rpne0d |  |-  ( ph -> P =/= 0 ) | 
						
							| 15 | 13 14 | recidd |  |-  ( ph -> ( P x. ( 1 / P ) ) = 1 ) | 
						
							| 16 | 15 | oveq2d |  |-  ( ph -> ( A ^c ( P x. ( 1 / P ) ) ) = ( A ^c 1 ) ) | 
						
							| 17 | 13 14 | reccld |  |-  ( ph -> ( 1 / P ) e. CC ) | 
						
							| 18 | 1 6 17 | cxpmuld |  |-  ( ph -> ( A ^c ( P x. ( 1 / P ) ) ) = ( ( A ^c P ) ^c ( 1 / P ) ) ) | 
						
							| 19 | 1 | rpcnd |  |-  ( ph -> A e. CC ) | 
						
							| 20 | 19 | cxp1d |  |-  ( ph -> ( A ^c 1 ) = A ) | 
						
							| 21 | 16 18 20 | 3eqtr3d |  |-  ( ph -> ( ( A ^c P ) ^c ( 1 / P ) ) = A ) | 
						
							| 22 | 4 | rpcnd |  |-  ( ph -> Q e. CC ) | 
						
							| 23 | 4 | rpne0d |  |-  ( ph -> Q =/= 0 ) | 
						
							| 24 | 22 23 | recidd |  |-  ( ph -> ( Q x. ( 1 / Q ) ) = 1 ) | 
						
							| 25 | 24 | oveq2d |  |-  ( ph -> ( B ^c ( Q x. ( 1 / Q ) ) ) = ( B ^c 1 ) ) | 
						
							| 26 | 22 23 | reccld |  |-  ( ph -> ( 1 / Q ) e. CC ) | 
						
							| 27 | 3 9 26 | cxpmuld |  |-  ( ph -> ( B ^c ( Q x. ( 1 / Q ) ) ) = ( ( B ^c Q ) ^c ( 1 / Q ) ) ) | 
						
							| 28 | 3 | rpcnd |  |-  ( ph -> B e. CC ) | 
						
							| 29 | 28 | cxp1d |  |-  ( ph -> ( B ^c 1 ) = B ) | 
						
							| 30 | 25 27 29 | 3eqtr3d |  |-  ( ph -> ( ( B ^c Q ) ^c ( 1 / Q ) ) = B ) | 
						
							| 31 | 21 30 | oveq12d |  |-  ( ph -> ( ( ( A ^c P ) ^c ( 1 / P ) ) x. ( ( B ^c Q ) ^c ( 1 / Q ) ) ) = ( A x. B ) ) | 
						
							| 32 | 7 | rpcnd |  |-  ( ph -> ( A ^c P ) e. CC ) | 
						
							| 33 | 32 13 14 | divrecd |  |-  ( ph -> ( ( A ^c P ) / P ) = ( ( A ^c P ) x. ( 1 / P ) ) ) | 
						
							| 34 | 10 | rpcnd |  |-  ( ph -> ( B ^c Q ) e. CC ) | 
						
							| 35 | 34 22 23 | divrecd |  |-  ( ph -> ( ( B ^c Q ) / Q ) = ( ( B ^c Q ) x. ( 1 / Q ) ) ) | 
						
							| 36 | 33 35 | oveq12d |  |-  ( ph -> ( ( ( A ^c P ) / P ) + ( ( B ^c Q ) / Q ) ) = ( ( ( A ^c P ) x. ( 1 / P ) ) + ( ( B ^c Q ) x. ( 1 / Q ) ) ) ) | 
						
							| 37 | 36 | eqcomd |  |-  ( ph -> ( ( ( A ^c P ) x. ( 1 / P ) ) + ( ( B ^c Q ) x. ( 1 / Q ) ) ) = ( ( ( A ^c P ) / P ) + ( ( B ^c Q ) / Q ) ) ) | 
						
							| 38 | 12 31 37 | 3brtr3d |  |-  ( ph -> ( A x. B ) <_ ( ( ( A ^c P ) / P ) + ( ( B ^c Q ) / Q ) ) ) |