Metamath Proof Explorer


Theorem young2d

Description: Young's inequality for n = 2 , a direct application of amgmw2d . (Contributed by Kunhao Zheng, 6-Jul-2021)

Ref Expression
Hypotheses young2d.0 φ A +
young2d.1 φ P +
young2d.2 φ B +
young2d.3 φ Q +
young2d.4 φ 1 P + 1 Q = 1
Assertion young2d φ A B A P P + B Q Q

Proof

Step Hyp Ref Expression
1 young2d.0 φ A +
2 young2d.1 φ P +
3 young2d.2 φ B +
4 young2d.3 φ Q +
5 young2d.4 φ 1 P + 1 Q = 1
6 2 rpred φ P
7 1 6 rpcxpcld φ A P +
8 2 rpreccld φ 1 P +
9 4 rpred φ Q
10 3 9 rpcxpcld φ B Q +
11 4 rpreccld φ 1 Q +
12 7 8 10 11 5 amgmw2d φ A P 1 P B Q 1 Q A P 1 P + B Q 1 Q
13 2 rpcnd φ P
14 2 rpne0d φ P 0
15 13 14 recidd φ P 1 P = 1
16 15 oveq2d φ A P 1 P = A 1
17 13 14 reccld φ 1 P
18 1 6 17 cxpmuld φ A P 1 P = A P 1 P
19 1 rpcnd φ A
20 19 cxp1d φ A 1 = A
21 16 18 20 3eqtr3d φ A P 1 P = A
22 4 rpcnd φ Q
23 4 rpne0d φ Q 0
24 22 23 recidd φ Q 1 Q = 1
25 24 oveq2d φ B Q 1 Q = B 1
26 22 23 reccld φ 1 Q
27 3 9 26 cxpmuld φ B Q 1 Q = B Q 1 Q
28 3 rpcnd φ B
29 28 cxp1d φ B 1 = B
30 25 27 29 3eqtr3d φ B Q 1 Q = B
31 21 30 oveq12d φ A P 1 P B Q 1 Q = A B
32 7 rpcnd φ A P
33 32 13 14 divrecd φ A P P = A P 1 P
34 10 rpcnd φ B Q
35 34 22 23 divrecd φ B Q Q = B Q 1 Q
36 33 35 oveq12d φ A P P + B Q Q = A P 1 P + B Q 1 Q
37 36 eqcomd φ A P 1 P + B Q 1 Q = A P P + B Q Q
38 12 31 37 3brtr3d φ A B A P P + B Q Q