Metamath Proof Explorer


Theorem young2d

Description: Young's inequality for n = 2 , a direct application of amgmw2d . (Contributed by Kunhao Zheng, 6-Jul-2021)

Ref Expression
Hypotheses young2d.0 φA+
young2d.1 φP+
young2d.2 φB+
young2d.3 φQ+
young2d.4 φ1P+1Q=1
Assertion young2d φABAPP+BQQ

Proof

Step Hyp Ref Expression
1 young2d.0 φA+
2 young2d.1 φP+
3 young2d.2 φB+
4 young2d.3 φQ+
5 young2d.4 φ1P+1Q=1
6 2 rpred φP
7 1 6 rpcxpcld φAP+
8 2 rpreccld φ1P+
9 4 rpred φQ
10 3 9 rpcxpcld φBQ+
11 4 rpreccld φ1Q+
12 7 8 10 11 5 amgmw2d φAP1PBQ1QAP1P+BQ1Q
13 2 rpcnd φP
14 2 rpne0d φP0
15 13 14 recidd φP1P=1
16 15 oveq2d φAP1P=A1
17 13 14 reccld φ1P
18 1 6 17 cxpmuld φAP1P=AP1P
19 1 rpcnd φA
20 19 cxp1d φA1=A
21 16 18 20 3eqtr3d φAP1P=A
22 4 rpcnd φQ
23 4 rpne0d φQ0
24 22 23 recidd φQ1Q=1
25 24 oveq2d φBQ1Q=B1
26 22 23 reccld φ1Q
27 3 9 26 cxpmuld φBQ1Q=BQ1Q
28 3 rpcnd φB
29 28 cxp1d φB1=B
30 25 27 29 3eqtr3d φBQ1Q=B
31 21 30 oveq12d φAP1PBQ1Q=AB
32 7 rpcnd φAP
33 32 13 14 divrecd φAPP=AP1P
34 10 rpcnd φBQ
35 34 22 23 divrecd φBQQ=BQ1Q
36 33 35 oveq12d φAPP+BQQ=AP1P+BQ1Q
37 36 eqcomd φAP1P+BQ1Q=APP+BQQ
38 12 31 37 3brtr3d φABAPP+BQQ