Step |
Hyp |
Ref |
Expression |
1 |
|
amgmw2d.0 |
|
2 |
|
amgmw2d.1 |
|
3 |
|
amgmw2d.2 |
|
4 |
|
amgmw2d.3 |
|
5 |
|
amgmw2d.4 |
|
6 |
|
eqid |
|
7 |
|
fzofi |
|
8 |
7
|
a1i |
|
9 |
|
2nn |
|
10 |
|
lbfzo0 |
|
11 |
9 10
|
mpbir |
|
12 |
|
ne0i |
|
13 |
11 12
|
mp1i |
|
14 |
1 3
|
s2cld |
|
15 |
|
wrdf |
|
16 |
14 15
|
syl |
|
17 |
|
s2len |
|
18 |
17
|
oveq2i |
|
19 |
18
|
feq2i |
|
20 |
16 19
|
sylib |
|
21 |
2 4
|
s2cld |
|
22 |
|
wrdf |
|
23 |
21 22
|
syl |
|
24 |
|
s2len |
|
25 |
24
|
oveq2i |
|
26 |
25
|
feq2i |
|
27 |
23 26
|
sylib |
|
28 |
|
cnring |
|
29 |
|
ringmnd |
|
30 |
28 29
|
mp1i |
|
31 |
2
|
rpcnd |
|
32 |
4
|
rpcnd |
|
33 |
|
cnfldbas |
|
34 |
|
cnfldadd |
|
35 |
33 34
|
gsumws2 |
|
36 |
30 31 32 35
|
syl3anc |
|
37 |
36 5
|
eqtrd |
|
38 |
6 8 13 20 27 37
|
amgmwlem |
|
39 |
1 3
|
jca |
|
40 |
2 4
|
jca |
|
41 |
|
ofs2 |
|
42 |
39 40 41
|
syl2anc |
|
43 |
42
|
oveq2d |
|
44 |
6
|
ringmgp |
|
45 |
28 44
|
mp1i |
|
46 |
2
|
rpred |
|
47 |
1 46
|
rpcxpcld |
|
48 |
47
|
rpcnd |
|
49 |
4
|
rpred |
|
50 |
3 49
|
rpcxpcld |
|
51 |
50
|
rpcnd |
|
52 |
6 33
|
mgpbas |
|
53 |
|
cnfldmul |
|
54 |
6 53
|
mgpplusg |
|
55 |
52 54
|
gsumws2 |
|
56 |
45 48 51 55
|
syl3anc |
|
57 |
43 56
|
eqtrd |
|
58 |
|
ofs2 |
|
59 |
39 40 58
|
syl2anc |
|
60 |
59
|
oveq2d |
|
61 |
1 2
|
rpmulcld |
|
62 |
61
|
rpcnd |
|
63 |
3 4
|
rpmulcld |
|
64 |
63
|
rpcnd |
|
65 |
33 34
|
gsumws2 |
|
66 |
30 62 64 65
|
syl3anc |
|
67 |
60 66
|
eqtrd |
|
68 |
38 57 67
|
3brtr3d |
|