| Step | Hyp | Ref | Expression | 
						
							| 1 |  | amgmw2d.0 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ+ ) | 
						
							| 2 |  | amgmw2d.1 | ⊢ ( 𝜑  →  𝑃  ∈  ℝ+ ) | 
						
							| 3 |  | amgmw2d.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ+ ) | 
						
							| 4 |  | amgmw2d.3 | ⊢ ( 𝜑  →  𝑄  ∈  ℝ+ ) | 
						
							| 5 |  | amgmw2d.4 | ⊢ ( 𝜑  →  ( 𝑃  +  𝑄 )  =  1 ) | 
						
							| 6 |  | eqid | ⊢ ( mulGrp ‘ ℂfld )  =  ( mulGrp ‘ ℂfld ) | 
						
							| 7 |  | fzofi | ⊢ ( 0 ..^ 2 )  ∈  Fin | 
						
							| 8 | 7 | a1i | ⊢ ( 𝜑  →  ( 0 ..^ 2 )  ∈  Fin ) | 
						
							| 9 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 10 |  | lbfzo0 | ⊢ ( 0  ∈  ( 0 ..^ 2 )  ↔  2  ∈  ℕ ) | 
						
							| 11 | 9 10 | mpbir | ⊢ 0  ∈  ( 0 ..^ 2 ) | 
						
							| 12 |  | ne0i | ⊢ ( 0  ∈  ( 0 ..^ 2 )  →  ( 0 ..^ 2 )  ≠  ∅ ) | 
						
							| 13 | 11 12 | mp1i | ⊢ ( 𝜑  →  ( 0 ..^ 2 )  ≠  ∅ ) | 
						
							| 14 | 1 3 | s2cld | ⊢ ( 𝜑  →  〈“ 𝐴 𝐵 ”〉  ∈  Word  ℝ+ ) | 
						
							| 15 |  | wrdf | ⊢ ( 〈“ 𝐴 𝐵 ”〉  ∈  Word  ℝ+  →  〈“ 𝐴 𝐵 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 ”〉 ) ) ⟶ ℝ+ ) | 
						
							| 16 | 14 15 | syl | ⊢ ( 𝜑  →  〈“ 𝐴 𝐵 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 ”〉 ) ) ⟶ ℝ+ ) | 
						
							| 17 |  | s2len | ⊢ ( ♯ ‘ 〈“ 𝐴 𝐵 ”〉 )  =  2 | 
						
							| 18 | 17 | oveq2i | ⊢ ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 ”〉 ) )  =  ( 0 ..^ 2 ) | 
						
							| 19 | 18 | feq2i | ⊢ ( 〈“ 𝐴 𝐵 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 ”〉 ) ) ⟶ ℝ+  ↔  〈“ 𝐴 𝐵 ”〉 : ( 0 ..^ 2 ) ⟶ ℝ+ ) | 
						
							| 20 | 16 19 | sylib | ⊢ ( 𝜑  →  〈“ 𝐴 𝐵 ”〉 : ( 0 ..^ 2 ) ⟶ ℝ+ ) | 
						
							| 21 | 2 4 | s2cld | ⊢ ( 𝜑  →  〈“ 𝑃 𝑄 ”〉  ∈  Word  ℝ+ ) | 
						
							| 22 |  | wrdf | ⊢ ( 〈“ 𝑃 𝑄 ”〉  ∈  Word  ℝ+  →  〈“ 𝑃 𝑄 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝑃 𝑄 ”〉 ) ) ⟶ ℝ+ ) | 
						
							| 23 | 21 22 | syl | ⊢ ( 𝜑  →  〈“ 𝑃 𝑄 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝑃 𝑄 ”〉 ) ) ⟶ ℝ+ ) | 
						
							| 24 |  | s2len | ⊢ ( ♯ ‘ 〈“ 𝑃 𝑄 ”〉 )  =  2 | 
						
							| 25 | 24 | oveq2i | ⊢ ( 0 ..^ ( ♯ ‘ 〈“ 𝑃 𝑄 ”〉 ) )  =  ( 0 ..^ 2 ) | 
						
							| 26 | 25 | feq2i | ⊢ ( 〈“ 𝑃 𝑄 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝑃 𝑄 ”〉 ) ) ⟶ ℝ+  ↔  〈“ 𝑃 𝑄 ”〉 : ( 0 ..^ 2 ) ⟶ ℝ+ ) | 
						
							| 27 | 23 26 | sylib | ⊢ ( 𝜑  →  〈“ 𝑃 𝑄 ”〉 : ( 0 ..^ 2 ) ⟶ ℝ+ ) | 
						
							| 28 |  | cnring | ⊢ ℂfld  ∈  Ring | 
						
							| 29 |  | ringmnd | ⊢ ( ℂfld  ∈  Ring  →  ℂfld  ∈  Mnd ) | 
						
							| 30 | 28 29 | mp1i | ⊢ ( 𝜑  →  ℂfld  ∈  Mnd ) | 
						
							| 31 | 2 | rpcnd | ⊢ ( 𝜑  →  𝑃  ∈  ℂ ) | 
						
							| 32 | 4 | rpcnd | ⊢ ( 𝜑  →  𝑄  ∈  ℂ ) | 
						
							| 33 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 34 |  | cnfldadd | ⊢  +   =  ( +g ‘ ℂfld ) | 
						
							| 35 | 33 34 | gsumws2 | ⊢ ( ( ℂfld  ∈  Mnd  ∧  𝑃  ∈  ℂ  ∧  𝑄  ∈  ℂ )  →  ( ℂfld  Σg  〈“ 𝑃 𝑄 ”〉 )  =  ( 𝑃  +  𝑄 ) ) | 
						
							| 36 | 30 31 32 35 | syl3anc | ⊢ ( 𝜑  →  ( ℂfld  Σg  〈“ 𝑃 𝑄 ”〉 )  =  ( 𝑃  +  𝑄 ) ) | 
						
							| 37 | 36 5 | eqtrd | ⊢ ( 𝜑  →  ( ℂfld  Σg  〈“ 𝑃 𝑄 ”〉 )  =  1 ) | 
						
							| 38 | 6 8 13 20 27 37 | amgmwlem | ⊢ ( 𝜑  →  ( ( mulGrp ‘ ℂfld )  Σg  ( 〈“ 𝐴 𝐵 ”〉  ∘f  ↑𝑐 〈“ 𝑃 𝑄 ”〉 ) )  ≤  ( ℂfld  Σg  ( 〈“ 𝐴 𝐵 ”〉  ∘f   ·  〈“ 𝑃 𝑄 ”〉 ) ) ) | 
						
							| 39 | 1 3 | jca | ⊢ ( 𝜑  →  ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ+ ) ) | 
						
							| 40 | 2 4 | jca | ⊢ ( 𝜑  →  ( 𝑃  ∈  ℝ+  ∧  𝑄  ∈  ℝ+ ) ) | 
						
							| 41 |  | ofs2 | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ+ )  ∧  ( 𝑃  ∈  ℝ+  ∧  𝑄  ∈  ℝ+ ) )  →  ( 〈“ 𝐴 𝐵 ”〉  ∘f  ↑𝑐 〈“ 𝑃 𝑄 ”〉 )  =  〈“ ( 𝐴 ↑𝑐 𝑃 ) ( 𝐵 ↑𝑐 𝑄 ) ”〉 ) | 
						
							| 42 | 39 40 41 | syl2anc | ⊢ ( 𝜑  →  ( 〈“ 𝐴 𝐵 ”〉  ∘f  ↑𝑐 〈“ 𝑃 𝑄 ”〉 )  =  〈“ ( 𝐴 ↑𝑐 𝑃 ) ( 𝐵 ↑𝑐 𝑄 ) ”〉 ) | 
						
							| 43 | 42 | oveq2d | ⊢ ( 𝜑  →  ( ( mulGrp ‘ ℂfld )  Σg  ( 〈“ 𝐴 𝐵 ”〉  ∘f  ↑𝑐 〈“ 𝑃 𝑄 ”〉 ) )  =  ( ( mulGrp ‘ ℂfld )  Σg  〈“ ( 𝐴 ↑𝑐 𝑃 ) ( 𝐵 ↑𝑐 𝑄 ) ”〉 ) ) | 
						
							| 44 | 6 | ringmgp | ⊢ ( ℂfld  ∈  Ring  →  ( mulGrp ‘ ℂfld )  ∈  Mnd ) | 
						
							| 45 | 28 44 | mp1i | ⊢ ( 𝜑  →  ( mulGrp ‘ ℂfld )  ∈  Mnd ) | 
						
							| 46 | 2 | rpred | ⊢ ( 𝜑  →  𝑃  ∈  ℝ ) | 
						
							| 47 | 1 46 | rpcxpcld | ⊢ ( 𝜑  →  ( 𝐴 ↑𝑐 𝑃 )  ∈  ℝ+ ) | 
						
							| 48 | 47 | rpcnd | ⊢ ( 𝜑  →  ( 𝐴 ↑𝑐 𝑃 )  ∈  ℂ ) | 
						
							| 49 | 4 | rpred | ⊢ ( 𝜑  →  𝑄  ∈  ℝ ) | 
						
							| 50 | 3 49 | rpcxpcld | ⊢ ( 𝜑  →  ( 𝐵 ↑𝑐 𝑄 )  ∈  ℝ+ ) | 
						
							| 51 | 50 | rpcnd | ⊢ ( 𝜑  →  ( 𝐵 ↑𝑐 𝑄 )  ∈  ℂ ) | 
						
							| 52 | 6 33 | mgpbas | ⊢ ℂ  =  ( Base ‘ ( mulGrp ‘ ℂfld ) ) | 
						
							| 53 |  | cnfldmul | ⊢  ·   =  ( .r ‘ ℂfld ) | 
						
							| 54 | 6 53 | mgpplusg | ⊢  ·   =  ( +g ‘ ( mulGrp ‘ ℂfld ) ) | 
						
							| 55 | 52 54 | gsumws2 | ⊢ ( ( ( mulGrp ‘ ℂfld )  ∈  Mnd  ∧  ( 𝐴 ↑𝑐 𝑃 )  ∈  ℂ  ∧  ( 𝐵 ↑𝑐 𝑄 )  ∈  ℂ )  →  ( ( mulGrp ‘ ℂfld )  Σg  〈“ ( 𝐴 ↑𝑐 𝑃 ) ( 𝐵 ↑𝑐 𝑄 ) ”〉 )  =  ( ( 𝐴 ↑𝑐 𝑃 )  ·  ( 𝐵 ↑𝑐 𝑄 ) ) ) | 
						
							| 56 | 45 48 51 55 | syl3anc | ⊢ ( 𝜑  →  ( ( mulGrp ‘ ℂfld )  Σg  〈“ ( 𝐴 ↑𝑐 𝑃 ) ( 𝐵 ↑𝑐 𝑄 ) ”〉 )  =  ( ( 𝐴 ↑𝑐 𝑃 )  ·  ( 𝐵 ↑𝑐 𝑄 ) ) ) | 
						
							| 57 | 43 56 | eqtrd | ⊢ ( 𝜑  →  ( ( mulGrp ‘ ℂfld )  Σg  ( 〈“ 𝐴 𝐵 ”〉  ∘f  ↑𝑐 〈“ 𝑃 𝑄 ”〉 ) )  =  ( ( 𝐴 ↑𝑐 𝑃 )  ·  ( 𝐵 ↑𝑐 𝑄 ) ) ) | 
						
							| 58 |  | ofs2 | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ+ )  ∧  ( 𝑃  ∈  ℝ+  ∧  𝑄  ∈  ℝ+ ) )  →  ( 〈“ 𝐴 𝐵 ”〉  ∘f   ·  〈“ 𝑃 𝑄 ”〉 )  =  〈“ ( 𝐴  ·  𝑃 ) ( 𝐵  ·  𝑄 ) ”〉 ) | 
						
							| 59 | 39 40 58 | syl2anc | ⊢ ( 𝜑  →  ( 〈“ 𝐴 𝐵 ”〉  ∘f   ·  〈“ 𝑃 𝑄 ”〉 )  =  〈“ ( 𝐴  ·  𝑃 ) ( 𝐵  ·  𝑄 ) ”〉 ) | 
						
							| 60 | 59 | oveq2d | ⊢ ( 𝜑  →  ( ℂfld  Σg  ( 〈“ 𝐴 𝐵 ”〉  ∘f   ·  〈“ 𝑃 𝑄 ”〉 ) )  =  ( ℂfld  Σg  〈“ ( 𝐴  ·  𝑃 ) ( 𝐵  ·  𝑄 ) ”〉 ) ) | 
						
							| 61 | 1 2 | rpmulcld | ⊢ ( 𝜑  →  ( 𝐴  ·  𝑃 )  ∈  ℝ+ ) | 
						
							| 62 | 61 | rpcnd | ⊢ ( 𝜑  →  ( 𝐴  ·  𝑃 )  ∈  ℂ ) | 
						
							| 63 | 3 4 | rpmulcld | ⊢ ( 𝜑  →  ( 𝐵  ·  𝑄 )  ∈  ℝ+ ) | 
						
							| 64 | 63 | rpcnd | ⊢ ( 𝜑  →  ( 𝐵  ·  𝑄 )  ∈  ℂ ) | 
						
							| 65 | 33 34 | gsumws2 | ⊢ ( ( ℂfld  ∈  Mnd  ∧  ( 𝐴  ·  𝑃 )  ∈  ℂ  ∧  ( 𝐵  ·  𝑄 )  ∈  ℂ )  →  ( ℂfld  Σg  〈“ ( 𝐴  ·  𝑃 ) ( 𝐵  ·  𝑄 ) ”〉 )  =  ( ( 𝐴  ·  𝑃 )  +  ( 𝐵  ·  𝑄 ) ) ) | 
						
							| 66 | 30 62 64 65 | syl3anc | ⊢ ( 𝜑  →  ( ℂfld  Σg  〈“ ( 𝐴  ·  𝑃 ) ( 𝐵  ·  𝑄 ) ”〉 )  =  ( ( 𝐴  ·  𝑃 )  +  ( 𝐵  ·  𝑄 ) ) ) | 
						
							| 67 | 60 66 | eqtrd | ⊢ ( 𝜑  →  ( ℂfld  Σg  ( 〈“ 𝐴 𝐵 ”〉  ∘f   ·  〈“ 𝑃 𝑄 ”〉 ) )  =  ( ( 𝐴  ·  𝑃 )  +  ( 𝐵  ·  𝑄 ) ) ) | 
						
							| 68 | 38 57 67 | 3brtr3d | ⊢ ( 𝜑  →  ( ( 𝐴 ↑𝑐 𝑃 )  ·  ( 𝐵 ↑𝑐 𝑄 ) )  ≤  ( ( 𝐴  ·  𝑃 )  +  ( 𝐵  ·  𝑄 ) ) ) |