Step |
Hyp |
Ref |
Expression |
1 |
|
amgmw2d.0 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
2 |
|
amgmw2d.1 |
⊢ ( 𝜑 → 𝑃 ∈ ℝ+ ) |
3 |
|
amgmw2d.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
4 |
|
amgmw2d.3 |
⊢ ( 𝜑 → 𝑄 ∈ ℝ+ ) |
5 |
|
amgmw2d.4 |
⊢ ( 𝜑 → ( 𝑃 + 𝑄 ) = 1 ) |
6 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
7 |
|
fzofi |
⊢ ( 0 ..^ 2 ) ∈ Fin |
8 |
7
|
a1i |
⊢ ( 𝜑 → ( 0 ..^ 2 ) ∈ Fin ) |
9 |
|
2nn |
⊢ 2 ∈ ℕ |
10 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ 2 ) ↔ 2 ∈ ℕ ) |
11 |
9 10
|
mpbir |
⊢ 0 ∈ ( 0 ..^ 2 ) |
12 |
|
ne0i |
⊢ ( 0 ∈ ( 0 ..^ 2 ) → ( 0 ..^ 2 ) ≠ ∅ ) |
13 |
11 12
|
mp1i |
⊢ ( 𝜑 → ( 0 ..^ 2 ) ≠ ∅ ) |
14 |
1 3
|
s2cld |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 ”〉 ∈ Word ℝ+ ) |
15 |
|
wrdf |
⊢ ( 〈“ 𝐴 𝐵 ”〉 ∈ Word ℝ+ → 〈“ 𝐴 𝐵 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 ”〉 ) ) ⟶ ℝ+ ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 ”〉 ) ) ⟶ ℝ+ ) |
17 |
|
s2len |
⊢ ( ♯ ‘ 〈“ 𝐴 𝐵 ”〉 ) = 2 |
18 |
17
|
oveq2i |
⊢ ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 ”〉 ) ) = ( 0 ..^ 2 ) |
19 |
18
|
feq2i |
⊢ ( 〈“ 𝐴 𝐵 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 ”〉 ) ) ⟶ ℝ+ ↔ 〈“ 𝐴 𝐵 ”〉 : ( 0 ..^ 2 ) ⟶ ℝ+ ) |
20 |
16 19
|
sylib |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 ”〉 : ( 0 ..^ 2 ) ⟶ ℝ+ ) |
21 |
2 4
|
s2cld |
⊢ ( 𝜑 → 〈“ 𝑃 𝑄 ”〉 ∈ Word ℝ+ ) |
22 |
|
wrdf |
⊢ ( 〈“ 𝑃 𝑄 ”〉 ∈ Word ℝ+ → 〈“ 𝑃 𝑄 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝑃 𝑄 ”〉 ) ) ⟶ ℝ+ ) |
23 |
21 22
|
syl |
⊢ ( 𝜑 → 〈“ 𝑃 𝑄 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝑃 𝑄 ”〉 ) ) ⟶ ℝ+ ) |
24 |
|
s2len |
⊢ ( ♯ ‘ 〈“ 𝑃 𝑄 ”〉 ) = 2 |
25 |
24
|
oveq2i |
⊢ ( 0 ..^ ( ♯ ‘ 〈“ 𝑃 𝑄 ”〉 ) ) = ( 0 ..^ 2 ) |
26 |
25
|
feq2i |
⊢ ( 〈“ 𝑃 𝑄 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝑃 𝑄 ”〉 ) ) ⟶ ℝ+ ↔ 〈“ 𝑃 𝑄 ”〉 : ( 0 ..^ 2 ) ⟶ ℝ+ ) |
27 |
23 26
|
sylib |
⊢ ( 𝜑 → 〈“ 𝑃 𝑄 ”〉 : ( 0 ..^ 2 ) ⟶ ℝ+ ) |
28 |
|
cnring |
⊢ ℂfld ∈ Ring |
29 |
|
ringmnd |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ Mnd ) |
30 |
28 29
|
mp1i |
⊢ ( 𝜑 → ℂfld ∈ Mnd ) |
31 |
2
|
rpcnd |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
32 |
4
|
rpcnd |
⊢ ( 𝜑 → 𝑄 ∈ ℂ ) |
33 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
34 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
35 |
33 34
|
gsumws2 |
⊢ ( ( ℂfld ∈ Mnd ∧ 𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ) → ( ℂfld Σg 〈“ 𝑃 𝑄 ”〉 ) = ( 𝑃 + 𝑄 ) ) |
36 |
30 31 32 35
|
syl3anc |
⊢ ( 𝜑 → ( ℂfld Σg 〈“ 𝑃 𝑄 ”〉 ) = ( 𝑃 + 𝑄 ) ) |
37 |
36 5
|
eqtrd |
⊢ ( 𝜑 → ( ℂfld Σg 〈“ 𝑃 𝑄 ”〉 ) = 1 ) |
38 |
6 8 13 20 27 37
|
amgmwlem |
⊢ ( 𝜑 → ( ( mulGrp ‘ ℂfld ) Σg ( 〈“ 𝐴 𝐵 ”〉 ∘f ↑𝑐 〈“ 𝑃 𝑄 ”〉 ) ) ≤ ( ℂfld Σg ( 〈“ 𝐴 𝐵 ”〉 ∘f · 〈“ 𝑃 𝑄 ”〉 ) ) ) |
39 |
1 3
|
jca |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) ) |
40 |
2 4
|
jca |
⊢ ( 𝜑 → ( 𝑃 ∈ ℝ+ ∧ 𝑄 ∈ ℝ+ ) ) |
41 |
|
ofs2 |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑃 ∈ ℝ+ ∧ 𝑄 ∈ ℝ+ ) ) → ( 〈“ 𝐴 𝐵 ”〉 ∘f ↑𝑐 〈“ 𝑃 𝑄 ”〉 ) = 〈“ ( 𝐴 ↑𝑐 𝑃 ) ( 𝐵 ↑𝑐 𝑄 ) ”〉 ) |
42 |
39 40 41
|
syl2anc |
⊢ ( 𝜑 → ( 〈“ 𝐴 𝐵 ”〉 ∘f ↑𝑐 〈“ 𝑃 𝑄 ”〉 ) = 〈“ ( 𝐴 ↑𝑐 𝑃 ) ( 𝐵 ↑𝑐 𝑄 ) ”〉 ) |
43 |
42
|
oveq2d |
⊢ ( 𝜑 → ( ( mulGrp ‘ ℂfld ) Σg ( 〈“ 𝐴 𝐵 ”〉 ∘f ↑𝑐 〈“ 𝑃 𝑄 ”〉 ) ) = ( ( mulGrp ‘ ℂfld ) Σg 〈“ ( 𝐴 ↑𝑐 𝑃 ) ( 𝐵 ↑𝑐 𝑄 ) ”〉 ) ) |
44 |
6
|
ringmgp |
⊢ ( ℂfld ∈ Ring → ( mulGrp ‘ ℂfld ) ∈ Mnd ) |
45 |
28 44
|
mp1i |
⊢ ( 𝜑 → ( mulGrp ‘ ℂfld ) ∈ Mnd ) |
46 |
2
|
rpred |
⊢ ( 𝜑 → 𝑃 ∈ ℝ ) |
47 |
1 46
|
rpcxpcld |
⊢ ( 𝜑 → ( 𝐴 ↑𝑐 𝑃 ) ∈ ℝ+ ) |
48 |
47
|
rpcnd |
⊢ ( 𝜑 → ( 𝐴 ↑𝑐 𝑃 ) ∈ ℂ ) |
49 |
4
|
rpred |
⊢ ( 𝜑 → 𝑄 ∈ ℝ ) |
50 |
3 49
|
rpcxpcld |
⊢ ( 𝜑 → ( 𝐵 ↑𝑐 𝑄 ) ∈ ℝ+ ) |
51 |
50
|
rpcnd |
⊢ ( 𝜑 → ( 𝐵 ↑𝑐 𝑄 ) ∈ ℂ ) |
52 |
6 33
|
mgpbas |
⊢ ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
53 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
54 |
6 53
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ ℂfld ) ) |
55 |
52 54
|
gsumws2 |
⊢ ( ( ( mulGrp ‘ ℂfld ) ∈ Mnd ∧ ( 𝐴 ↑𝑐 𝑃 ) ∈ ℂ ∧ ( 𝐵 ↑𝑐 𝑄 ) ∈ ℂ ) → ( ( mulGrp ‘ ℂfld ) Σg 〈“ ( 𝐴 ↑𝑐 𝑃 ) ( 𝐵 ↑𝑐 𝑄 ) ”〉 ) = ( ( 𝐴 ↑𝑐 𝑃 ) · ( 𝐵 ↑𝑐 𝑄 ) ) ) |
56 |
45 48 51 55
|
syl3anc |
⊢ ( 𝜑 → ( ( mulGrp ‘ ℂfld ) Σg 〈“ ( 𝐴 ↑𝑐 𝑃 ) ( 𝐵 ↑𝑐 𝑄 ) ”〉 ) = ( ( 𝐴 ↑𝑐 𝑃 ) · ( 𝐵 ↑𝑐 𝑄 ) ) ) |
57 |
43 56
|
eqtrd |
⊢ ( 𝜑 → ( ( mulGrp ‘ ℂfld ) Σg ( 〈“ 𝐴 𝐵 ”〉 ∘f ↑𝑐 〈“ 𝑃 𝑄 ”〉 ) ) = ( ( 𝐴 ↑𝑐 𝑃 ) · ( 𝐵 ↑𝑐 𝑄 ) ) ) |
58 |
|
ofs2 |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑃 ∈ ℝ+ ∧ 𝑄 ∈ ℝ+ ) ) → ( 〈“ 𝐴 𝐵 ”〉 ∘f · 〈“ 𝑃 𝑄 ”〉 ) = 〈“ ( 𝐴 · 𝑃 ) ( 𝐵 · 𝑄 ) ”〉 ) |
59 |
39 40 58
|
syl2anc |
⊢ ( 𝜑 → ( 〈“ 𝐴 𝐵 ”〉 ∘f · 〈“ 𝑃 𝑄 ”〉 ) = 〈“ ( 𝐴 · 𝑃 ) ( 𝐵 · 𝑄 ) ”〉 ) |
60 |
59
|
oveq2d |
⊢ ( 𝜑 → ( ℂfld Σg ( 〈“ 𝐴 𝐵 ”〉 ∘f · 〈“ 𝑃 𝑄 ”〉 ) ) = ( ℂfld Σg 〈“ ( 𝐴 · 𝑃 ) ( 𝐵 · 𝑄 ) ”〉 ) ) |
61 |
1 2
|
rpmulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝑃 ) ∈ ℝ+ ) |
62 |
61
|
rpcnd |
⊢ ( 𝜑 → ( 𝐴 · 𝑃 ) ∈ ℂ ) |
63 |
3 4
|
rpmulcld |
⊢ ( 𝜑 → ( 𝐵 · 𝑄 ) ∈ ℝ+ ) |
64 |
63
|
rpcnd |
⊢ ( 𝜑 → ( 𝐵 · 𝑄 ) ∈ ℂ ) |
65 |
33 34
|
gsumws2 |
⊢ ( ( ℂfld ∈ Mnd ∧ ( 𝐴 · 𝑃 ) ∈ ℂ ∧ ( 𝐵 · 𝑄 ) ∈ ℂ ) → ( ℂfld Σg 〈“ ( 𝐴 · 𝑃 ) ( 𝐵 · 𝑄 ) ”〉 ) = ( ( 𝐴 · 𝑃 ) + ( 𝐵 · 𝑄 ) ) ) |
66 |
30 62 64 65
|
syl3anc |
⊢ ( 𝜑 → ( ℂfld Σg 〈“ ( 𝐴 · 𝑃 ) ( 𝐵 · 𝑄 ) ”〉 ) = ( ( 𝐴 · 𝑃 ) + ( 𝐵 · 𝑄 ) ) ) |
67 |
60 66
|
eqtrd |
⊢ ( 𝜑 → ( ℂfld Σg ( 〈“ 𝐴 𝐵 ”〉 ∘f · 〈“ 𝑃 𝑄 ”〉 ) ) = ( ( 𝐴 · 𝑃 ) + ( 𝐵 · 𝑄 ) ) ) |
68 |
38 57 67
|
3brtr3d |
⊢ ( 𝜑 → ( ( 𝐴 ↑𝑐 𝑃 ) · ( 𝐵 ↑𝑐 𝑄 ) ) ≤ ( ( 𝐴 · 𝑃 ) + ( 𝐵 · 𝑄 ) ) ) |