| Step |
Hyp |
Ref |
Expression |
| 1 |
|
amgmw2d.0 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
| 2 |
|
amgmw2d.1 |
⊢ ( 𝜑 → 𝑃 ∈ ℝ+ ) |
| 3 |
|
amgmw2d.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
| 4 |
|
amgmw2d.3 |
⊢ ( 𝜑 → 𝑄 ∈ ℝ+ ) |
| 5 |
|
amgmw2d.4 |
⊢ ( 𝜑 → ( 𝑃 + 𝑄 ) = 1 ) |
| 6 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
| 7 |
|
fzofi |
⊢ ( 0 ..^ 2 ) ∈ Fin |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → ( 0 ..^ 2 ) ∈ Fin ) |
| 9 |
|
2nn |
⊢ 2 ∈ ℕ |
| 10 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ 2 ) ↔ 2 ∈ ℕ ) |
| 11 |
9 10
|
mpbir |
⊢ 0 ∈ ( 0 ..^ 2 ) |
| 12 |
|
ne0i |
⊢ ( 0 ∈ ( 0 ..^ 2 ) → ( 0 ..^ 2 ) ≠ ∅ ) |
| 13 |
11 12
|
mp1i |
⊢ ( 𝜑 → ( 0 ..^ 2 ) ≠ ∅ ) |
| 14 |
1 3
|
s2cld |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 ”〉 ∈ Word ℝ+ ) |
| 15 |
|
wrdf |
⊢ ( 〈“ 𝐴 𝐵 ”〉 ∈ Word ℝ+ → 〈“ 𝐴 𝐵 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 ”〉 ) ) ⟶ ℝ+ ) |
| 16 |
14 15
|
syl |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 ”〉 ) ) ⟶ ℝ+ ) |
| 17 |
|
s2len |
⊢ ( ♯ ‘ 〈“ 𝐴 𝐵 ”〉 ) = 2 |
| 18 |
17
|
oveq2i |
⊢ ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 ”〉 ) ) = ( 0 ..^ 2 ) |
| 19 |
18
|
feq2i |
⊢ ( 〈“ 𝐴 𝐵 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 ”〉 ) ) ⟶ ℝ+ ↔ 〈“ 𝐴 𝐵 ”〉 : ( 0 ..^ 2 ) ⟶ ℝ+ ) |
| 20 |
16 19
|
sylib |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 ”〉 : ( 0 ..^ 2 ) ⟶ ℝ+ ) |
| 21 |
2 4
|
s2cld |
⊢ ( 𝜑 → 〈“ 𝑃 𝑄 ”〉 ∈ Word ℝ+ ) |
| 22 |
|
wrdf |
⊢ ( 〈“ 𝑃 𝑄 ”〉 ∈ Word ℝ+ → 〈“ 𝑃 𝑄 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝑃 𝑄 ”〉 ) ) ⟶ ℝ+ ) |
| 23 |
21 22
|
syl |
⊢ ( 𝜑 → 〈“ 𝑃 𝑄 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝑃 𝑄 ”〉 ) ) ⟶ ℝ+ ) |
| 24 |
|
s2len |
⊢ ( ♯ ‘ 〈“ 𝑃 𝑄 ”〉 ) = 2 |
| 25 |
24
|
oveq2i |
⊢ ( 0 ..^ ( ♯ ‘ 〈“ 𝑃 𝑄 ”〉 ) ) = ( 0 ..^ 2 ) |
| 26 |
25
|
feq2i |
⊢ ( 〈“ 𝑃 𝑄 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝑃 𝑄 ”〉 ) ) ⟶ ℝ+ ↔ 〈“ 𝑃 𝑄 ”〉 : ( 0 ..^ 2 ) ⟶ ℝ+ ) |
| 27 |
23 26
|
sylib |
⊢ ( 𝜑 → 〈“ 𝑃 𝑄 ”〉 : ( 0 ..^ 2 ) ⟶ ℝ+ ) |
| 28 |
|
cnring |
⊢ ℂfld ∈ Ring |
| 29 |
|
ringmnd |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ Mnd ) |
| 30 |
28 29
|
mp1i |
⊢ ( 𝜑 → ℂfld ∈ Mnd ) |
| 31 |
2
|
rpcnd |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
| 32 |
4
|
rpcnd |
⊢ ( 𝜑 → 𝑄 ∈ ℂ ) |
| 33 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 34 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
| 35 |
33 34
|
gsumws2 |
⊢ ( ( ℂfld ∈ Mnd ∧ 𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ) → ( ℂfld Σg 〈“ 𝑃 𝑄 ”〉 ) = ( 𝑃 + 𝑄 ) ) |
| 36 |
30 31 32 35
|
syl3anc |
⊢ ( 𝜑 → ( ℂfld Σg 〈“ 𝑃 𝑄 ”〉 ) = ( 𝑃 + 𝑄 ) ) |
| 37 |
36 5
|
eqtrd |
⊢ ( 𝜑 → ( ℂfld Σg 〈“ 𝑃 𝑄 ”〉 ) = 1 ) |
| 38 |
6 8 13 20 27 37
|
amgmwlem |
⊢ ( 𝜑 → ( ( mulGrp ‘ ℂfld ) Σg ( 〈“ 𝐴 𝐵 ”〉 ∘f ↑𝑐 〈“ 𝑃 𝑄 ”〉 ) ) ≤ ( ℂfld Σg ( 〈“ 𝐴 𝐵 ”〉 ∘f · 〈“ 𝑃 𝑄 ”〉 ) ) ) |
| 39 |
1 3
|
jca |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) ) |
| 40 |
2 4
|
jca |
⊢ ( 𝜑 → ( 𝑃 ∈ ℝ+ ∧ 𝑄 ∈ ℝ+ ) ) |
| 41 |
|
ofs2 |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑃 ∈ ℝ+ ∧ 𝑄 ∈ ℝ+ ) ) → ( 〈“ 𝐴 𝐵 ”〉 ∘f ↑𝑐 〈“ 𝑃 𝑄 ”〉 ) = 〈“ ( 𝐴 ↑𝑐 𝑃 ) ( 𝐵 ↑𝑐 𝑄 ) ”〉 ) |
| 42 |
39 40 41
|
syl2anc |
⊢ ( 𝜑 → ( 〈“ 𝐴 𝐵 ”〉 ∘f ↑𝑐 〈“ 𝑃 𝑄 ”〉 ) = 〈“ ( 𝐴 ↑𝑐 𝑃 ) ( 𝐵 ↑𝑐 𝑄 ) ”〉 ) |
| 43 |
42
|
oveq2d |
⊢ ( 𝜑 → ( ( mulGrp ‘ ℂfld ) Σg ( 〈“ 𝐴 𝐵 ”〉 ∘f ↑𝑐 〈“ 𝑃 𝑄 ”〉 ) ) = ( ( mulGrp ‘ ℂfld ) Σg 〈“ ( 𝐴 ↑𝑐 𝑃 ) ( 𝐵 ↑𝑐 𝑄 ) ”〉 ) ) |
| 44 |
6
|
ringmgp |
⊢ ( ℂfld ∈ Ring → ( mulGrp ‘ ℂfld ) ∈ Mnd ) |
| 45 |
28 44
|
mp1i |
⊢ ( 𝜑 → ( mulGrp ‘ ℂfld ) ∈ Mnd ) |
| 46 |
2
|
rpred |
⊢ ( 𝜑 → 𝑃 ∈ ℝ ) |
| 47 |
1 46
|
rpcxpcld |
⊢ ( 𝜑 → ( 𝐴 ↑𝑐 𝑃 ) ∈ ℝ+ ) |
| 48 |
47
|
rpcnd |
⊢ ( 𝜑 → ( 𝐴 ↑𝑐 𝑃 ) ∈ ℂ ) |
| 49 |
4
|
rpred |
⊢ ( 𝜑 → 𝑄 ∈ ℝ ) |
| 50 |
3 49
|
rpcxpcld |
⊢ ( 𝜑 → ( 𝐵 ↑𝑐 𝑄 ) ∈ ℝ+ ) |
| 51 |
50
|
rpcnd |
⊢ ( 𝜑 → ( 𝐵 ↑𝑐 𝑄 ) ∈ ℂ ) |
| 52 |
6 33
|
mgpbas |
⊢ ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
| 53 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
| 54 |
6 53
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ ℂfld ) ) |
| 55 |
52 54
|
gsumws2 |
⊢ ( ( ( mulGrp ‘ ℂfld ) ∈ Mnd ∧ ( 𝐴 ↑𝑐 𝑃 ) ∈ ℂ ∧ ( 𝐵 ↑𝑐 𝑄 ) ∈ ℂ ) → ( ( mulGrp ‘ ℂfld ) Σg 〈“ ( 𝐴 ↑𝑐 𝑃 ) ( 𝐵 ↑𝑐 𝑄 ) ”〉 ) = ( ( 𝐴 ↑𝑐 𝑃 ) · ( 𝐵 ↑𝑐 𝑄 ) ) ) |
| 56 |
45 48 51 55
|
syl3anc |
⊢ ( 𝜑 → ( ( mulGrp ‘ ℂfld ) Σg 〈“ ( 𝐴 ↑𝑐 𝑃 ) ( 𝐵 ↑𝑐 𝑄 ) ”〉 ) = ( ( 𝐴 ↑𝑐 𝑃 ) · ( 𝐵 ↑𝑐 𝑄 ) ) ) |
| 57 |
43 56
|
eqtrd |
⊢ ( 𝜑 → ( ( mulGrp ‘ ℂfld ) Σg ( 〈“ 𝐴 𝐵 ”〉 ∘f ↑𝑐 〈“ 𝑃 𝑄 ”〉 ) ) = ( ( 𝐴 ↑𝑐 𝑃 ) · ( 𝐵 ↑𝑐 𝑄 ) ) ) |
| 58 |
|
ofs2 |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑃 ∈ ℝ+ ∧ 𝑄 ∈ ℝ+ ) ) → ( 〈“ 𝐴 𝐵 ”〉 ∘f · 〈“ 𝑃 𝑄 ”〉 ) = 〈“ ( 𝐴 · 𝑃 ) ( 𝐵 · 𝑄 ) ”〉 ) |
| 59 |
39 40 58
|
syl2anc |
⊢ ( 𝜑 → ( 〈“ 𝐴 𝐵 ”〉 ∘f · 〈“ 𝑃 𝑄 ”〉 ) = 〈“ ( 𝐴 · 𝑃 ) ( 𝐵 · 𝑄 ) ”〉 ) |
| 60 |
59
|
oveq2d |
⊢ ( 𝜑 → ( ℂfld Σg ( 〈“ 𝐴 𝐵 ”〉 ∘f · 〈“ 𝑃 𝑄 ”〉 ) ) = ( ℂfld Σg 〈“ ( 𝐴 · 𝑃 ) ( 𝐵 · 𝑄 ) ”〉 ) ) |
| 61 |
1 2
|
rpmulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝑃 ) ∈ ℝ+ ) |
| 62 |
61
|
rpcnd |
⊢ ( 𝜑 → ( 𝐴 · 𝑃 ) ∈ ℂ ) |
| 63 |
3 4
|
rpmulcld |
⊢ ( 𝜑 → ( 𝐵 · 𝑄 ) ∈ ℝ+ ) |
| 64 |
63
|
rpcnd |
⊢ ( 𝜑 → ( 𝐵 · 𝑄 ) ∈ ℂ ) |
| 65 |
33 34
|
gsumws2 |
⊢ ( ( ℂfld ∈ Mnd ∧ ( 𝐴 · 𝑃 ) ∈ ℂ ∧ ( 𝐵 · 𝑄 ) ∈ ℂ ) → ( ℂfld Σg 〈“ ( 𝐴 · 𝑃 ) ( 𝐵 · 𝑄 ) ”〉 ) = ( ( 𝐴 · 𝑃 ) + ( 𝐵 · 𝑄 ) ) ) |
| 66 |
30 62 64 65
|
syl3anc |
⊢ ( 𝜑 → ( ℂfld Σg 〈“ ( 𝐴 · 𝑃 ) ( 𝐵 · 𝑄 ) ”〉 ) = ( ( 𝐴 · 𝑃 ) + ( 𝐵 · 𝑄 ) ) ) |
| 67 |
60 66
|
eqtrd |
⊢ ( 𝜑 → ( ℂfld Σg ( 〈“ 𝐴 𝐵 ”〉 ∘f · 〈“ 𝑃 𝑄 ”〉 ) ) = ( ( 𝐴 · 𝑃 ) + ( 𝐵 · 𝑄 ) ) ) |
| 68 |
38 57 67
|
3brtr3d |
⊢ ( 𝜑 → ( ( 𝐴 ↑𝑐 𝑃 ) · ( 𝐵 ↑𝑐 𝑄 ) ) ≤ ( ( 𝐴 · 𝑃 ) + ( 𝐵 · 𝑄 ) ) ) |