| Step |
Hyp |
Ref |
Expression |
| 1 |
|
amgmw2d.0 |
|- ( ph -> A e. RR+ ) |
| 2 |
|
amgmw2d.1 |
|- ( ph -> P e. RR+ ) |
| 3 |
|
amgmw2d.2 |
|- ( ph -> B e. RR+ ) |
| 4 |
|
amgmw2d.3 |
|- ( ph -> Q e. RR+ ) |
| 5 |
|
amgmw2d.4 |
|- ( ph -> ( P + Q ) = 1 ) |
| 6 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
| 7 |
|
fzofi |
|- ( 0 ..^ 2 ) e. Fin |
| 8 |
7
|
a1i |
|- ( ph -> ( 0 ..^ 2 ) e. Fin ) |
| 9 |
|
2nn |
|- 2 e. NN |
| 10 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ 2 ) <-> 2 e. NN ) |
| 11 |
9 10
|
mpbir |
|- 0 e. ( 0 ..^ 2 ) |
| 12 |
|
ne0i |
|- ( 0 e. ( 0 ..^ 2 ) -> ( 0 ..^ 2 ) =/= (/) ) |
| 13 |
11 12
|
mp1i |
|- ( ph -> ( 0 ..^ 2 ) =/= (/) ) |
| 14 |
1 3
|
s2cld |
|- ( ph -> <" A B "> e. Word RR+ ) |
| 15 |
|
wrdf |
|- ( <" A B "> e. Word RR+ -> <" A B "> : ( 0 ..^ ( # ` <" A B "> ) ) --> RR+ ) |
| 16 |
14 15
|
syl |
|- ( ph -> <" A B "> : ( 0 ..^ ( # ` <" A B "> ) ) --> RR+ ) |
| 17 |
|
s2len |
|- ( # ` <" A B "> ) = 2 |
| 18 |
17
|
oveq2i |
|- ( 0 ..^ ( # ` <" A B "> ) ) = ( 0 ..^ 2 ) |
| 19 |
18
|
feq2i |
|- ( <" A B "> : ( 0 ..^ ( # ` <" A B "> ) ) --> RR+ <-> <" A B "> : ( 0 ..^ 2 ) --> RR+ ) |
| 20 |
16 19
|
sylib |
|- ( ph -> <" A B "> : ( 0 ..^ 2 ) --> RR+ ) |
| 21 |
2 4
|
s2cld |
|- ( ph -> <" P Q "> e. Word RR+ ) |
| 22 |
|
wrdf |
|- ( <" P Q "> e. Word RR+ -> <" P Q "> : ( 0 ..^ ( # ` <" P Q "> ) ) --> RR+ ) |
| 23 |
21 22
|
syl |
|- ( ph -> <" P Q "> : ( 0 ..^ ( # ` <" P Q "> ) ) --> RR+ ) |
| 24 |
|
s2len |
|- ( # ` <" P Q "> ) = 2 |
| 25 |
24
|
oveq2i |
|- ( 0 ..^ ( # ` <" P Q "> ) ) = ( 0 ..^ 2 ) |
| 26 |
25
|
feq2i |
|- ( <" P Q "> : ( 0 ..^ ( # ` <" P Q "> ) ) --> RR+ <-> <" P Q "> : ( 0 ..^ 2 ) --> RR+ ) |
| 27 |
23 26
|
sylib |
|- ( ph -> <" P Q "> : ( 0 ..^ 2 ) --> RR+ ) |
| 28 |
|
cnring |
|- CCfld e. Ring |
| 29 |
|
ringmnd |
|- ( CCfld e. Ring -> CCfld e. Mnd ) |
| 30 |
28 29
|
mp1i |
|- ( ph -> CCfld e. Mnd ) |
| 31 |
2
|
rpcnd |
|- ( ph -> P e. CC ) |
| 32 |
4
|
rpcnd |
|- ( ph -> Q e. CC ) |
| 33 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 34 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
| 35 |
33 34
|
gsumws2 |
|- ( ( CCfld e. Mnd /\ P e. CC /\ Q e. CC ) -> ( CCfld gsum <" P Q "> ) = ( P + Q ) ) |
| 36 |
30 31 32 35
|
syl3anc |
|- ( ph -> ( CCfld gsum <" P Q "> ) = ( P + Q ) ) |
| 37 |
36 5
|
eqtrd |
|- ( ph -> ( CCfld gsum <" P Q "> ) = 1 ) |
| 38 |
6 8 13 20 27 37
|
amgmwlem |
|- ( ph -> ( ( mulGrp ` CCfld ) gsum ( <" A B "> oF ^c <" P Q "> ) ) <_ ( CCfld gsum ( <" A B "> oF x. <" P Q "> ) ) ) |
| 39 |
1 3
|
jca |
|- ( ph -> ( A e. RR+ /\ B e. RR+ ) ) |
| 40 |
2 4
|
jca |
|- ( ph -> ( P e. RR+ /\ Q e. RR+ ) ) |
| 41 |
|
ofs2 |
|- ( ( ( A e. RR+ /\ B e. RR+ ) /\ ( P e. RR+ /\ Q e. RR+ ) ) -> ( <" A B "> oF ^c <" P Q "> ) = <" ( A ^c P ) ( B ^c Q ) "> ) |
| 42 |
39 40 41
|
syl2anc |
|- ( ph -> ( <" A B "> oF ^c <" P Q "> ) = <" ( A ^c P ) ( B ^c Q ) "> ) |
| 43 |
42
|
oveq2d |
|- ( ph -> ( ( mulGrp ` CCfld ) gsum ( <" A B "> oF ^c <" P Q "> ) ) = ( ( mulGrp ` CCfld ) gsum <" ( A ^c P ) ( B ^c Q ) "> ) ) |
| 44 |
6
|
ringmgp |
|- ( CCfld e. Ring -> ( mulGrp ` CCfld ) e. Mnd ) |
| 45 |
28 44
|
mp1i |
|- ( ph -> ( mulGrp ` CCfld ) e. Mnd ) |
| 46 |
2
|
rpred |
|- ( ph -> P e. RR ) |
| 47 |
1 46
|
rpcxpcld |
|- ( ph -> ( A ^c P ) e. RR+ ) |
| 48 |
47
|
rpcnd |
|- ( ph -> ( A ^c P ) e. CC ) |
| 49 |
4
|
rpred |
|- ( ph -> Q e. RR ) |
| 50 |
3 49
|
rpcxpcld |
|- ( ph -> ( B ^c Q ) e. RR+ ) |
| 51 |
50
|
rpcnd |
|- ( ph -> ( B ^c Q ) e. CC ) |
| 52 |
6 33
|
mgpbas |
|- CC = ( Base ` ( mulGrp ` CCfld ) ) |
| 53 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
| 54 |
6 53
|
mgpplusg |
|- x. = ( +g ` ( mulGrp ` CCfld ) ) |
| 55 |
52 54
|
gsumws2 |
|- ( ( ( mulGrp ` CCfld ) e. Mnd /\ ( A ^c P ) e. CC /\ ( B ^c Q ) e. CC ) -> ( ( mulGrp ` CCfld ) gsum <" ( A ^c P ) ( B ^c Q ) "> ) = ( ( A ^c P ) x. ( B ^c Q ) ) ) |
| 56 |
45 48 51 55
|
syl3anc |
|- ( ph -> ( ( mulGrp ` CCfld ) gsum <" ( A ^c P ) ( B ^c Q ) "> ) = ( ( A ^c P ) x. ( B ^c Q ) ) ) |
| 57 |
43 56
|
eqtrd |
|- ( ph -> ( ( mulGrp ` CCfld ) gsum ( <" A B "> oF ^c <" P Q "> ) ) = ( ( A ^c P ) x. ( B ^c Q ) ) ) |
| 58 |
|
ofs2 |
|- ( ( ( A e. RR+ /\ B e. RR+ ) /\ ( P e. RR+ /\ Q e. RR+ ) ) -> ( <" A B "> oF x. <" P Q "> ) = <" ( A x. P ) ( B x. Q ) "> ) |
| 59 |
39 40 58
|
syl2anc |
|- ( ph -> ( <" A B "> oF x. <" P Q "> ) = <" ( A x. P ) ( B x. Q ) "> ) |
| 60 |
59
|
oveq2d |
|- ( ph -> ( CCfld gsum ( <" A B "> oF x. <" P Q "> ) ) = ( CCfld gsum <" ( A x. P ) ( B x. Q ) "> ) ) |
| 61 |
1 2
|
rpmulcld |
|- ( ph -> ( A x. P ) e. RR+ ) |
| 62 |
61
|
rpcnd |
|- ( ph -> ( A x. P ) e. CC ) |
| 63 |
3 4
|
rpmulcld |
|- ( ph -> ( B x. Q ) e. RR+ ) |
| 64 |
63
|
rpcnd |
|- ( ph -> ( B x. Q ) e. CC ) |
| 65 |
33 34
|
gsumws2 |
|- ( ( CCfld e. Mnd /\ ( A x. P ) e. CC /\ ( B x. Q ) e. CC ) -> ( CCfld gsum <" ( A x. P ) ( B x. Q ) "> ) = ( ( A x. P ) + ( B x. Q ) ) ) |
| 66 |
30 62 64 65
|
syl3anc |
|- ( ph -> ( CCfld gsum <" ( A x. P ) ( B x. Q ) "> ) = ( ( A x. P ) + ( B x. Q ) ) ) |
| 67 |
60 66
|
eqtrd |
|- ( ph -> ( CCfld gsum ( <" A B "> oF x. <" P Q "> ) ) = ( ( A x. P ) + ( B x. Q ) ) ) |
| 68 |
38 57 67
|
3brtr3d |
|- ( ph -> ( ( A ^c P ) x. ( B ^c Q ) ) <_ ( ( A x. P ) + ( B x. Q ) ) ) |