| Step | Hyp | Ref | Expression | 
						
							| 1 |  | young2d.0 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ+ ) | 
						
							| 2 |  | young2d.1 | ⊢ ( 𝜑  →  𝑃  ∈  ℝ+ ) | 
						
							| 3 |  | young2d.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ+ ) | 
						
							| 4 |  | young2d.3 | ⊢ ( 𝜑  →  𝑄  ∈  ℝ+ ) | 
						
							| 5 |  | young2d.4 | ⊢ ( 𝜑  →  ( ( 1  /  𝑃 )  +  ( 1  /  𝑄 ) )  =  1 ) | 
						
							| 6 | 2 | rpred | ⊢ ( 𝜑  →  𝑃  ∈  ℝ ) | 
						
							| 7 | 1 6 | rpcxpcld | ⊢ ( 𝜑  →  ( 𝐴 ↑𝑐 𝑃 )  ∈  ℝ+ ) | 
						
							| 8 | 2 | rpreccld | ⊢ ( 𝜑  →  ( 1  /  𝑃 )  ∈  ℝ+ ) | 
						
							| 9 | 4 | rpred | ⊢ ( 𝜑  →  𝑄  ∈  ℝ ) | 
						
							| 10 | 3 9 | rpcxpcld | ⊢ ( 𝜑  →  ( 𝐵 ↑𝑐 𝑄 )  ∈  ℝ+ ) | 
						
							| 11 | 4 | rpreccld | ⊢ ( 𝜑  →  ( 1  /  𝑄 )  ∈  ℝ+ ) | 
						
							| 12 | 7 8 10 11 5 | amgmw2d | ⊢ ( 𝜑  →  ( ( ( 𝐴 ↑𝑐 𝑃 ) ↑𝑐 ( 1  /  𝑃 ) )  ·  ( ( 𝐵 ↑𝑐 𝑄 ) ↑𝑐 ( 1  /  𝑄 ) ) )  ≤  ( ( ( 𝐴 ↑𝑐 𝑃 )  ·  ( 1  /  𝑃 ) )  +  ( ( 𝐵 ↑𝑐 𝑄 )  ·  ( 1  /  𝑄 ) ) ) ) | 
						
							| 13 | 2 | rpcnd | ⊢ ( 𝜑  →  𝑃  ∈  ℂ ) | 
						
							| 14 | 2 | rpne0d | ⊢ ( 𝜑  →  𝑃  ≠  0 ) | 
						
							| 15 | 13 14 | recidd | ⊢ ( 𝜑  →  ( 𝑃  ·  ( 1  /  𝑃 ) )  =  1 ) | 
						
							| 16 | 15 | oveq2d | ⊢ ( 𝜑  →  ( 𝐴 ↑𝑐 ( 𝑃  ·  ( 1  /  𝑃 ) ) )  =  ( 𝐴 ↑𝑐 1 ) ) | 
						
							| 17 | 13 14 | reccld | ⊢ ( 𝜑  →  ( 1  /  𝑃 )  ∈  ℂ ) | 
						
							| 18 | 1 6 17 | cxpmuld | ⊢ ( 𝜑  →  ( 𝐴 ↑𝑐 ( 𝑃  ·  ( 1  /  𝑃 ) ) )  =  ( ( 𝐴 ↑𝑐 𝑃 ) ↑𝑐 ( 1  /  𝑃 ) ) ) | 
						
							| 19 | 1 | rpcnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 20 | 19 | cxp1d | ⊢ ( 𝜑  →  ( 𝐴 ↑𝑐 1 )  =  𝐴 ) | 
						
							| 21 | 16 18 20 | 3eqtr3d | ⊢ ( 𝜑  →  ( ( 𝐴 ↑𝑐 𝑃 ) ↑𝑐 ( 1  /  𝑃 ) )  =  𝐴 ) | 
						
							| 22 | 4 | rpcnd | ⊢ ( 𝜑  →  𝑄  ∈  ℂ ) | 
						
							| 23 | 4 | rpne0d | ⊢ ( 𝜑  →  𝑄  ≠  0 ) | 
						
							| 24 | 22 23 | recidd | ⊢ ( 𝜑  →  ( 𝑄  ·  ( 1  /  𝑄 ) )  =  1 ) | 
						
							| 25 | 24 | oveq2d | ⊢ ( 𝜑  →  ( 𝐵 ↑𝑐 ( 𝑄  ·  ( 1  /  𝑄 ) ) )  =  ( 𝐵 ↑𝑐 1 ) ) | 
						
							| 26 | 22 23 | reccld | ⊢ ( 𝜑  →  ( 1  /  𝑄 )  ∈  ℂ ) | 
						
							| 27 | 3 9 26 | cxpmuld | ⊢ ( 𝜑  →  ( 𝐵 ↑𝑐 ( 𝑄  ·  ( 1  /  𝑄 ) ) )  =  ( ( 𝐵 ↑𝑐 𝑄 ) ↑𝑐 ( 1  /  𝑄 ) ) ) | 
						
							| 28 | 3 | rpcnd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 29 | 28 | cxp1d | ⊢ ( 𝜑  →  ( 𝐵 ↑𝑐 1 )  =  𝐵 ) | 
						
							| 30 | 25 27 29 | 3eqtr3d | ⊢ ( 𝜑  →  ( ( 𝐵 ↑𝑐 𝑄 ) ↑𝑐 ( 1  /  𝑄 ) )  =  𝐵 ) | 
						
							| 31 | 21 30 | oveq12d | ⊢ ( 𝜑  →  ( ( ( 𝐴 ↑𝑐 𝑃 ) ↑𝑐 ( 1  /  𝑃 ) )  ·  ( ( 𝐵 ↑𝑐 𝑄 ) ↑𝑐 ( 1  /  𝑄 ) ) )  =  ( 𝐴  ·  𝐵 ) ) | 
						
							| 32 | 7 | rpcnd | ⊢ ( 𝜑  →  ( 𝐴 ↑𝑐 𝑃 )  ∈  ℂ ) | 
						
							| 33 | 32 13 14 | divrecd | ⊢ ( 𝜑  →  ( ( 𝐴 ↑𝑐 𝑃 )  /  𝑃 )  =  ( ( 𝐴 ↑𝑐 𝑃 )  ·  ( 1  /  𝑃 ) ) ) | 
						
							| 34 | 10 | rpcnd | ⊢ ( 𝜑  →  ( 𝐵 ↑𝑐 𝑄 )  ∈  ℂ ) | 
						
							| 35 | 34 22 23 | divrecd | ⊢ ( 𝜑  →  ( ( 𝐵 ↑𝑐 𝑄 )  /  𝑄 )  =  ( ( 𝐵 ↑𝑐 𝑄 )  ·  ( 1  /  𝑄 ) ) ) | 
						
							| 36 | 33 35 | oveq12d | ⊢ ( 𝜑  →  ( ( ( 𝐴 ↑𝑐 𝑃 )  /  𝑃 )  +  ( ( 𝐵 ↑𝑐 𝑄 )  /  𝑄 ) )  =  ( ( ( 𝐴 ↑𝑐 𝑃 )  ·  ( 1  /  𝑃 ) )  +  ( ( 𝐵 ↑𝑐 𝑄 )  ·  ( 1  /  𝑄 ) ) ) ) | 
						
							| 37 | 36 | eqcomd | ⊢ ( 𝜑  →  ( ( ( 𝐴 ↑𝑐 𝑃 )  ·  ( 1  /  𝑃 ) )  +  ( ( 𝐵 ↑𝑐 𝑄 )  ·  ( 1  /  𝑄 ) ) )  =  ( ( ( 𝐴 ↑𝑐 𝑃 )  /  𝑃 )  +  ( ( 𝐵 ↑𝑐 𝑄 )  /  𝑄 ) ) ) | 
						
							| 38 | 12 31 37 | 3brtr3d | ⊢ ( 𝜑  →  ( 𝐴  ·  𝐵 )  ≤  ( ( ( 𝐴 ↑𝑐 𝑃 )  /  𝑃 )  +  ( ( 𝐵 ↑𝑐 𝑄 )  /  𝑄 ) ) ) |