| Step |
Hyp |
Ref |
Expression |
| 1 |
|
young2d.0 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
| 2 |
|
young2d.1 |
⊢ ( 𝜑 → 𝑃 ∈ ℝ+ ) |
| 3 |
|
young2d.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
| 4 |
|
young2d.3 |
⊢ ( 𝜑 → 𝑄 ∈ ℝ+ ) |
| 5 |
|
young2d.4 |
⊢ ( 𝜑 → ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) = 1 ) |
| 6 |
2
|
rpred |
⊢ ( 𝜑 → 𝑃 ∈ ℝ ) |
| 7 |
1 6
|
rpcxpcld |
⊢ ( 𝜑 → ( 𝐴 ↑𝑐 𝑃 ) ∈ ℝ+ ) |
| 8 |
2
|
rpreccld |
⊢ ( 𝜑 → ( 1 / 𝑃 ) ∈ ℝ+ ) |
| 9 |
4
|
rpred |
⊢ ( 𝜑 → 𝑄 ∈ ℝ ) |
| 10 |
3 9
|
rpcxpcld |
⊢ ( 𝜑 → ( 𝐵 ↑𝑐 𝑄 ) ∈ ℝ+ ) |
| 11 |
4
|
rpreccld |
⊢ ( 𝜑 → ( 1 / 𝑄 ) ∈ ℝ+ ) |
| 12 |
7 8 10 11 5
|
amgmw2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑𝑐 𝑃 ) ↑𝑐 ( 1 / 𝑃 ) ) · ( ( 𝐵 ↑𝑐 𝑄 ) ↑𝑐 ( 1 / 𝑄 ) ) ) ≤ ( ( ( 𝐴 ↑𝑐 𝑃 ) · ( 1 / 𝑃 ) ) + ( ( 𝐵 ↑𝑐 𝑄 ) · ( 1 / 𝑄 ) ) ) ) |
| 13 |
2
|
rpcnd |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
| 14 |
2
|
rpne0d |
⊢ ( 𝜑 → 𝑃 ≠ 0 ) |
| 15 |
13 14
|
recidd |
⊢ ( 𝜑 → ( 𝑃 · ( 1 / 𝑃 ) ) = 1 ) |
| 16 |
15
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 ↑𝑐 ( 𝑃 · ( 1 / 𝑃 ) ) ) = ( 𝐴 ↑𝑐 1 ) ) |
| 17 |
13 14
|
reccld |
⊢ ( 𝜑 → ( 1 / 𝑃 ) ∈ ℂ ) |
| 18 |
1 6 17
|
cxpmuld |
⊢ ( 𝜑 → ( 𝐴 ↑𝑐 ( 𝑃 · ( 1 / 𝑃 ) ) ) = ( ( 𝐴 ↑𝑐 𝑃 ) ↑𝑐 ( 1 / 𝑃 ) ) ) |
| 19 |
1
|
rpcnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 20 |
19
|
cxp1d |
⊢ ( 𝜑 → ( 𝐴 ↑𝑐 1 ) = 𝐴 ) |
| 21 |
16 18 20
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝐴 ↑𝑐 𝑃 ) ↑𝑐 ( 1 / 𝑃 ) ) = 𝐴 ) |
| 22 |
4
|
rpcnd |
⊢ ( 𝜑 → 𝑄 ∈ ℂ ) |
| 23 |
4
|
rpne0d |
⊢ ( 𝜑 → 𝑄 ≠ 0 ) |
| 24 |
22 23
|
recidd |
⊢ ( 𝜑 → ( 𝑄 · ( 1 / 𝑄 ) ) = 1 ) |
| 25 |
24
|
oveq2d |
⊢ ( 𝜑 → ( 𝐵 ↑𝑐 ( 𝑄 · ( 1 / 𝑄 ) ) ) = ( 𝐵 ↑𝑐 1 ) ) |
| 26 |
22 23
|
reccld |
⊢ ( 𝜑 → ( 1 / 𝑄 ) ∈ ℂ ) |
| 27 |
3 9 26
|
cxpmuld |
⊢ ( 𝜑 → ( 𝐵 ↑𝑐 ( 𝑄 · ( 1 / 𝑄 ) ) ) = ( ( 𝐵 ↑𝑐 𝑄 ) ↑𝑐 ( 1 / 𝑄 ) ) ) |
| 28 |
3
|
rpcnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 29 |
28
|
cxp1d |
⊢ ( 𝜑 → ( 𝐵 ↑𝑐 1 ) = 𝐵 ) |
| 30 |
25 27 29
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝐵 ↑𝑐 𝑄 ) ↑𝑐 ( 1 / 𝑄 ) ) = 𝐵 ) |
| 31 |
21 30
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑𝑐 𝑃 ) ↑𝑐 ( 1 / 𝑃 ) ) · ( ( 𝐵 ↑𝑐 𝑄 ) ↑𝑐 ( 1 / 𝑄 ) ) ) = ( 𝐴 · 𝐵 ) ) |
| 32 |
7
|
rpcnd |
⊢ ( 𝜑 → ( 𝐴 ↑𝑐 𝑃 ) ∈ ℂ ) |
| 33 |
32 13 14
|
divrecd |
⊢ ( 𝜑 → ( ( 𝐴 ↑𝑐 𝑃 ) / 𝑃 ) = ( ( 𝐴 ↑𝑐 𝑃 ) · ( 1 / 𝑃 ) ) ) |
| 34 |
10
|
rpcnd |
⊢ ( 𝜑 → ( 𝐵 ↑𝑐 𝑄 ) ∈ ℂ ) |
| 35 |
34 22 23
|
divrecd |
⊢ ( 𝜑 → ( ( 𝐵 ↑𝑐 𝑄 ) / 𝑄 ) = ( ( 𝐵 ↑𝑐 𝑄 ) · ( 1 / 𝑄 ) ) ) |
| 36 |
33 35
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑𝑐 𝑃 ) / 𝑃 ) + ( ( 𝐵 ↑𝑐 𝑄 ) / 𝑄 ) ) = ( ( ( 𝐴 ↑𝑐 𝑃 ) · ( 1 / 𝑃 ) ) + ( ( 𝐵 ↑𝑐 𝑄 ) · ( 1 / 𝑄 ) ) ) ) |
| 37 |
36
|
eqcomd |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑𝑐 𝑃 ) · ( 1 / 𝑃 ) ) + ( ( 𝐵 ↑𝑐 𝑄 ) · ( 1 / 𝑄 ) ) ) = ( ( ( 𝐴 ↑𝑐 𝑃 ) / 𝑃 ) + ( ( 𝐵 ↑𝑐 𝑄 ) / 𝑄 ) ) ) |
| 38 |
12 31 37
|
3brtr3d |
⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) ≤ ( ( ( 𝐴 ↑𝑐 𝑃 ) / 𝑃 ) + ( ( 𝐵 ↑𝑐 𝑄 ) / 𝑄 ) ) ) |