Metamath Proof Explorer


Theorem young2d

Description: Young's inequality for n = 2 , a direct application of amgmw2d . (Contributed by Kunhao Zheng, 6-Jul-2021)

Ref Expression
Hypotheses young2d.0 ( 𝜑𝐴 ∈ ℝ+ )
young2d.1 ( 𝜑𝑃 ∈ ℝ+ )
young2d.2 ( 𝜑𝐵 ∈ ℝ+ )
young2d.3 ( 𝜑𝑄 ∈ ℝ+ )
young2d.4 ( 𝜑 → ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) = 1 )
Assertion young2d ( 𝜑 → ( 𝐴 · 𝐵 ) ≤ ( ( ( 𝐴𝑐 𝑃 ) / 𝑃 ) + ( ( 𝐵𝑐 𝑄 ) / 𝑄 ) ) )

Proof

Step Hyp Ref Expression
1 young2d.0 ( 𝜑𝐴 ∈ ℝ+ )
2 young2d.1 ( 𝜑𝑃 ∈ ℝ+ )
3 young2d.2 ( 𝜑𝐵 ∈ ℝ+ )
4 young2d.3 ( 𝜑𝑄 ∈ ℝ+ )
5 young2d.4 ( 𝜑 → ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) = 1 )
6 2 rpred ( 𝜑𝑃 ∈ ℝ )
7 1 6 rpcxpcld ( 𝜑 → ( 𝐴𝑐 𝑃 ) ∈ ℝ+ )
8 2 rpreccld ( 𝜑 → ( 1 / 𝑃 ) ∈ ℝ+ )
9 4 rpred ( 𝜑𝑄 ∈ ℝ )
10 3 9 rpcxpcld ( 𝜑 → ( 𝐵𝑐 𝑄 ) ∈ ℝ+ )
11 4 rpreccld ( 𝜑 → ( 1 / 𝑄 ) ∈ ℝ+ )
12 7 8 10 11 5 amgmw2d ( 𝜑 → ( ( ( 𝐴𝑐 𝑃 ) ↑𝑐 ( 1 / 𝑃 ) ) · ( ( 𝐵𝑐 𝑄 ) ↑𝑐 ( 1 / 𝑄 ) ) ) ≤ ( ( ( 𝐴𝑐 𝑃 ) · ( 1 / 𝑃 ) ) + ( ( 𝐵𝑐 𝑄 ) · ( 1 / 𝑄 ) ) ) )
13 2 rpcnd ( 𝜑𝑃 ∈ ℂ )
14 2 rpne0d ( 𝜑𝑃 ≠ 0 )
15 13 14 recidd ( 𝜑 → ( 𝑃 · ( 1 / 𝑃 ) ) = 1 )
16 15 oveq2d ( 𝜑 → ( 𝐴𝑐 ( 𝑃 · ( 1 / 𝑃 ) ) ) = ( 𝐴𝑐 1 ) )
17 13 14 reccld ( 𝜑 → ( 1 / 𝑃 ) ∈ ℂ )
18 1 6 17 cxpmuld ( 𝜑 → ( 𝐴𝑐 ( 𝑃 · ( 1 / 𝑃 ) ) ) = ( ( 𝐴𝑐 𝑃 ) ↑𝑐 ( 1 / 𝑃 ) ) )
19 1 rpcnd ( 𝜑𝐴 ∈ ℂ )
20 19 cxp1d ( 𝜑 → ( 𝐴𝑐 1 ) = 𝐴 )
21 16 18 20 3eqtr3d ( 𝜑 → ( ( 𝐴𝑐 𝑃 ) ↑𝑐 ( 1 / 𝑃 ) ) = 𝐴 )
22 4 rpcnd ( 𝜑𝑄 ∈ ℂ )
23 4 rpne0d ( 𝜑𝑄 ≠ 0 )
24 22 23 recidd ( 𝜑 → ( 𝑄 · ( 1 / 𝑄 ) ) = 1 )
25 24 oveq2d ( 𝜑 → ( 𝐵𝑐 ( 𝑄 · ( 1 / 𝑄 ) ) ) = ( 𝐵𝑐 1 ) )
26 22 23 reccld ( 𝜑 → ( 1 / 𝑄 ) ∈ ℂ )
27 3 9 26 cxpmuld ( 𝜑 → ( 𝐵𝑐 ( 𝑄 · ( 1 / 𝑄 ) ) ) = ( ( 𝐵𝑐 𝑄 ) ↑𝑐 ( 1 / 𝑄 ) ) )
28 3 rpcnd ( 𝜑𝐵 ∈ ℂ )
29 28 cxp1d ( 𝜑 → ( 𝐵𝑐 1 ) = 𝐵 )
30 25 27 29 3eqtr3d ( 𝜑 → ( ( 𝐵𝑐 𝑄 ) ↑𝑐 ( 1 / 𝑄 ) ) = 𝐵 )
31 21 30 oveq12d ( 𝜑 → ( ( ( 𝐴𝑐 𝑃 ) ↑𝑐 ( 1 / 𝑃 ) ) · ( ( 𝐵𝑐 𝑄 ) ↑𝑐 ( 1 / 𝑄 ) ) ) = ( 𝐴 · 𝐵 ) )
32 7 rpcnd ( 𝜑 → ( 𝐴𝑐 𝑃 ) ∈ ℂ )
33 32 13 14 divrecd ( 𝜑 → ( ( 𝐴𝑐 𝑃 ) / 𝑃 ) = ( ( 𝐴𝑐 𝑃 ) · ( 1 / 𝑃 ) ) )
34 10 rpcnd ( 𝜑 → ( 𝐵𝑐 𝑄 ) ∈ ℂ )
35 34 22 23 divrecd ( 𝜑 → ( ( 𝐵𝑐 𝑄 ) / 𝑄 ) = ( ( 𝐵𝑐 𝑄 ) · ( 1 / 𝑄 ) ) )
36 33 35 oveq12d ( 𝜑 → ( ( ( 𝐴𝑐 𝑃 ) / 𝑃 ) + ( ( 𝐵𝑐 𝑄 ) / 𝑄 ) ) = ( ( ( 𝐴𝑐 𝑃 ) · ( 1 / 𝑃 ) ) + ( ( 𝐵𝑐 𝑄 ) · ( 1 / 𝑄 ) ) ) )
37 36 eqcomd ( 𝜑 → ( ( ( 𝐴𝑐 𝑃 ) · ( 1 / 𝑃 ) ) + ( ( 𝐵𝑐 𝑄 ) · ( 1 / 𝑄 ) ) ) = ( ( ( 𝐴𝑐 𝑃 ) / 𝑃 ) + ( ( 𝐵𝑐 𝑄 ) / 𝑄 ) ) )
38 12 31 37 3brtr3d ( 𝜑 → ( 𝐴 · 𝐵 ) ≤ ( ( ( 𝐴𝑐 𝑃 ) / 𝑃 ) + ( ( 𝐵𝑐 𝑄 ) / 𝑄 ) ) )