Metamath Proof Explorer


Theorem 0bits

Description: The bits of zero. (Contributed by Mario Carneiro, 6-Sep-2016)

Ref Expression
Assertion 0bits bits0=

Proof

Step Hyp Ref Expression
1 c0ex 0V
2 1 snid 00
3 fzo01 0..^1=0
4 2 3 eleqtrri 00..^1
5 2cn 2
6 exp0 220=1
7 5 6 ax-mp 20=1
8 7 oveq2i 0..^20=0..^1
9 4 8 eleqtrri 00..^20
10 0z 0
11 0nn0 00
12 bitsfzo 00000..^20bits00..^0
13 10 11 12 mp2an 00..^20bits00..^0
14 9 13 mpbi bits00..^0
15 fzo0 0..^0=
16 14 15 sseqtri bits0
17 0ss bits0
18 16 17 eqssi bits0=