Metamath Proof Explorer


Theorem 0ghm

Description: The constant zero linear function between two groups. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses 0ghm.z 0˙=0N
0ghm.b B=BaseM
Assertion 0ghm MGrpNGrpB×0˙MGrpHomN

Proof

Step Hyp Ref Expression
1 0ghm.z 0˙=0N
2 0ghm.b B=BaseM
3 grpmnd MGrpMMnd
4 grpmnd NGrpNMnd
5 1 2 0mhm MMndNMndB×0˙MMndHomN
6 3 4 5 syl2an MGrpNGrpB×0˙MMndHomN
7 ghmmhmb MGrpNGrpMGrpHomN=MMndHomN
8 6 7 eleqtrrd MGrpNGrpB×0˙MGrpHomN