Metamath Proof Explorer


Theorem 0hashbc

Description: There are no subsets of the empty set with size greater than zero. (Contributed by Mario Carneiro, 22-Apr-2015)

Ref Expression
Hypothesis ramval.c C=aV,i0b𝒫a|b=i
Assertion 0hashbc NCN=

Proof

Step Hyp Ref Expression
1 ramval.c C=aV,i0b𝒫a|b=i
2 0fin Fin
3 nnnn0 NN0
4 1 hashbc2 FinN0CN=(N)
5 2 3 4 sylancr NCN=(N)
6 hash0 =0
7 6 oveq1i (N)=(0N)
8 bc0k N(0N)=0
9 7 8 eqtrid N(N)=0
10 5 9 eqtrd NCN=0
11 ovex CNV
12 hasheq0 CNVCN=0CN=
13 11 12 ax-mp CN=0CN=
14 10 13 sylib NCN=