Metamath Proof Explorer


Theorem ramval

Description: The value of the Ramsey number function. (Contributed by Mario Carneiro, 21-Apr-2015) (Revised by AV, 14-Sep-2020)

Ref Expression
Hypotheses ramval.c C=aV,i0b𝒫a|b=i
ramval.t T=n0|snsfRsCMcRx𝒫sFcxxCMf-1c
Assertion ramval M0RVF:R0MRamseyF=supT*<

Proof

Step Hyp Ref Expression
1 ramval.c C=aV,i0b𝒫a|b=i
2 ramval.t T=n0|snsfRsCMcRx𝒫sFcxxCMf-1c
3 df-ram Ramsey=m0,rVsupn0|snsfdomry𝒫s|y=mcdomrx𝒫srcxy𝒫xy=mfy=c*<
4 3 a1i M0RVF:R0Ramsey=m0,rVsupn0|snsfdomry𝒫s|y=mcdomrx𝒫srcxy𝒫xy=mfy=c*<
5 simplrr M0RVF:R0m=Mr=Fn0r=F
6 5 dmeqd M0RVF:R0m=Mr=Fn0domr=domF
7 simpll3 M0RVF:R0m=Mr=Fn0F:R0
8 7 fdmd M0RVF:R0m=Mr=Fn0domF=R
9 6 8 eqtrd M0RVF:R0m=Mr=Fn0domr=R
10 simplrl M0RVF:R0m=Mr=Fn0m=M
11 10 eqeq2d M0RVF:R0m=Mr=Fn0y=my=M
12 11 rabbidv M0RVF:R0m=Mr=Fn0y𝒫s|y=m=y𝒫s|y=M
13 vex sV
14 simpll1 M0RVF:R0m=Mr=Fn0M0
15 1 hashbcval sVM0sCM=y𝒫s|y=M
16 13 14 15 sylancr M0RVF:R0m=Mr=Fn0sCM=y𝒫s|y=M
17 12 16 eqtr4d M0RVF:R0m=Mr=Fn0y𝒫s|y=m=sCM
18 9 17 oveq12d M0RVF:R0m=Mr=Fn0domry𝒫s|y=m=RsCM
19 18 raleqdv M0RVF:R0m=Mr=Fn0fdomry𝒫s|y=mcdomrx𝒫srcxy𝒫xy=mfy=cfRsCMcdomrx𝒫srcxy𝒫xy=mfy=c
20 simpr m=Mr=Fr=F
21 20 dmeqd m=Mr=Fdomr=domF
22 fdm F:R0domF=R
23 22 3ad2ant3 M0RVF:R0domF=R
24 21 23 sylan9eqr M0RVF:R0m=Mr=Fdomr=R
25 24 ad2antrr M0RVF:R0m=Mr=Fn0fRsCMdomr=R
26 5 ad2antrr M0RVF:R0m=Mr=Fn0fRsCMx𝒫sr=F
27 26 fveq1d M0RVF:R0m=Mr=Fn0fRsCMx𝒫src=Fc
28 27 breq1d M0RVF:R0m=Mr=Fn0fRsCMx𝒫srcxFcx
29 10 ad2antrr M0RVF:R0m=Mr=Fn0fRsCMx𝒫sm=M
30 29 oveq2d M0RVF:R0m=Mr=Fn0fRsCMx𝒫sxCm=xCM
31 vex xV
32 14 ad2antrr M0RVF:R0m=Mr=Fn0fRsCMx𝒫sM0
33 29 32 eqeltrd M0RVF:R0m=Mr=Fn0fRsCMx𝒫sm0
34 1 hashbcval xVm0xCm=y𝒫x|y=m
35 31 33 34 sylancr M0RVF:R0m=Mr=Fn0fRsCMx𝒫sxCm=y𝒫x|y=m
36 30 35 eqtr3d M0RVF:R0m=Mr=Fn0fRsCMx𝒫sxCM=y𝒫x|y=m
37 36 sseq1d M0RVF:R0m=Mr=Fn0fRsCMx𝒫sxCMf-1cy𝒫x|y=mf-1c
38 rabss y𝒫x|y=mf-1cy𝒫xy=myf-1c
39 36 eleq2d M0RVF:R0m=Mr=Fn0fRsCMx𝒫syxCMyy𝒫x|y=m
40 rabid yy𝒫x|y=my𝒫xy=m
41 39 40 bitrdi M0RVF:R0m=Mr=Fn0fRsCMx𝒫syxCMy𝒫xy=m
42 41 biimpar M0RVF:R0m=Mr=Fn0fRsCMx𝒫sy𝒫xy=myxCM
43 elpwi x𝒫sxs
44 43 adantl M0RVF:R0m=Mr=Fn0fRsCMx𝒫sxs
45 1 hashbcss sVxsM0xCMsCM
46 13 44 32 45 mp3an2i M0RVF:R0m=Mr=Fn0fRsCMx𝒫sxCMsCM
47 46 sselda M0RVF:R0m=Mr=Fn0fRsCMx𝒫syxCMysCM
48 42 47 syldan M0RVF:R0m=Mr=Fn0fRsCMx𝒫sy𝒫xy=mysCM
49 elmapi fRsCMf:sCMR
50 49 ad3antlr M0RVF:R0m=Mr=Fn0fRsCMx𝒫sy𝒫xy=mf:sCMR
51 ffn f:sCMRfFnsCM
52 fniniseg fFnsCMyf-1cysCMfy=c
53 50 51 52 3syl M0RVF:R0m=Mr=Fn0fRsCMx𝒫sy𝒫xy=myf-1cysCMfy=c
54 48 53 mpbirand M0RVF:R0m=Mr=Fn0fRsCMx𝒫sy𝒫xy=myf-1cfy=c
55 54 anassrs M0RVF:R0m=Mr=Fn0fRsCMx𝒫sy𝒫xy=myf-1cfy=c
56 55 pm5.74da M0RVF:R0m=Mr=Fn0fRsCMx𝒫sy𝒫xy=myf-1cy=mfy=c
57 56 ralbidva M0RVF:R0m=Mr=Fn0fRsCMx𝒫sy𝒫xy=myf-1cy𝒫xy=mfy=c
58 38 57 bitrid M0RVF:R0m=Mr=Fn0fRsCMx𝒫sy𝒫x|y=mf-1cy𝒫xy=mfy=c
59 37 58 bitr2d M0RVF:R0m=Mr=Fn0fRsCMx𝒫sy𝒫xy=mfy=cxCMf-1c
60 28 59 anbi12d M0RVF:R0m=Mr=Fn0fRsCMx𝒫srcxy𝒫xy=mfy=cFcxxCMf-1c
61 60 rexbidva M0RVF:R0m=Mr=Fn0fRsCMx𝒫srcxy𝒫xy=mfy=cx𝒫sFcxxCMf-1c
62 25 61 rexeqbidv M0RVF:R0m=Mr=Fn0fRsCMcdomrx𝒫srcxy𝒫xy=mfy=ccRx𝒫sFcxxCMf-1c
63 62 ralbidva M0RVF:R0m=Mr=Fn0fRsCMcdomrx𝒫srcxy𝒫xy=mfy=cfRsCMcRx𝒫sFcxxCMf-1c
64 19 63 bitrd M0RVF:R0m=Mr=Fn0fdomry𝒫s|y=mcdomrx𝒫srcxy𝒫xy=mfy=cfRsCMcRx𝒫sFcxxCMf-1c
65 64 imbi2d M0RVF:R0m=Mr=Fn0nsfdomry𝒫s|y=mcdomrx𝒫srcxy𝒫xy=mfy=cnsfRsCMcRx𝒫sFcxxCMf-1c
66 65 albidv M0RVF:R0m=Mr=Fn0snsfdomry𝒫s|y=mcdomrx𝒫srcxy𝒫xy=mfy=csnsfRsCMcRx𝒫sFcxxCMf-1c
67 66 rabbidva M0RVF:R0m=Mr=Fn0|snsfdomry𝒫s|y=mcdomrx𝒫srcxy𝒫xy=mfy=c=n0|snsfRsCMcRx𝒫sFcxxCMf-1c
68 67 2 eqtr4di M0RVF:R0m=Mr=Fn0|snsfdomry𝒫s|y=mcdomrx𝒫srcxy𝒫xy=mfy=c=T
69 68 infeq1d M0RVF:R0m=Mr=Fsupn0|snsfdomry𝒫s|y=mcdomrx𝒫srcxy𝒫xy=mfy=c*<=supT*<
70 simp1 M0RVF:R0M0
71 simp3 M0RVF:R0F:R0
72 simp2 M0RVF:R0RV
73 71 72 fexd M0RVF:R0FV
74 xrltso <Or*
75 74 infex supT*<V
76 75 a1i M0RVF:R0supT*<V
77 4 69 70 73 76 ovmpod M0RVF:R0MRamseyF=supT*<