Metamath Proof Explorer


Theorem 0nelop

Description: A property of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion 0nelop ¬AB

Proof

Step Hyp Ref Expression
1 id ABAB
2 oprcl ABAVBV
3 dfopg AVBVAB=AAB
4 2 3 syl ABAB=AAB
5 1 4 eleqtrd ABAAB
6 elpri AAB=A=AB
7 5 6 syl AB=A=AB
8 2 simpld ABAV
9 8 snn0d ABA
10 9 necomd ABA
11 prnzg AVAB
12 8 11 syl ABAB
13 12 necomd ABAB
14 10 13 jca ABAAB
15 neanior AAB¬=A=AB
16 14 15 sylib AB¬=A=AB
17 7 16 pm2.65i ¬AB