Metamath Proof Explorer


Theorem 0oval

Description: Value of the zero operator. (Contributed by NM, 28-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses 0oval.1 X=BaseSetU
0oval.6 Z=0vecW
0oval.0 O=U0opW
Assertion 0oval UNrmCVecWNrmCVecAXOA=Z

Proof

Step Hyp Ref Expression
1 0oval.1 X=BaseSetU
2 0oval.6 Z=0vecW
3 0oval.0 O=U0opW
4 1 2 3 0ofval UNrmCVecWNrmCVecO=X×Z
5 4 fveq1d UNrmCVecWNrmCVecOA=X×ZA
6 5 3adant3 UNrmCVecWNrmCVecAXOA=X×ZA
7 2 fvexi ZV
8 7 fvconst2 AXX×ZA=Z
9 8 3ad2ant3 UNrmCVecWNrmCVecAXX×ZA=Z
10 6 9 eqtrd UNrmCVecWNrmCVecAXOA=Z