Metamath Proof Explorer


Theorem 0pthon

Description: A path of length 0 from a vertex to itself. (Contributed by Alexander van der Vekens, 3-Dec-2017) (Revised by AV, 20-Jan-2021) (Revised by AV, 30-Oct-2021)

Ref Expression
Hypothesis 0pthon.v V=VtxG
Assertion 0pthon P:00VP0=NNPathsOnGNP

Proof

Step Hyp Ref Expression
1 0pthon.v V=VtxG
2 1 0trlon P:00VP0=NNTrailsOnGNP
3 simpl P:00VP0=NP:00V
4 id P:00VP:00V
5 0z 0
6 elfz3 0000
7 5 6 mp1i P:00V000
8 4 7 ffvelcdmd P:00VP0V
9 8 adantr P:00VP0=NP0V
10 eleq1 P0=NP0VNV
11 10 adantl P:00VP0=NP0VNV
12 9 11 mpbid P:00VP0=NNV
13 1 1vgrex NVGV
14 1 0pth GVPathsGPP:00V
15 12 13 14 3syl P:00VP0=NPathsGPP:00V
16 3 15 mpbird P:00VP0=NPathsGP
17 1 0wlkonlem1 P:00VP0=NNVNV
18 1 0wlkonlem2 P:00VP0=NPV𝑝𝑚00
19 0ex V
20 18 19 jctil P:00VP0=NVPV𝑝𝑚00
21 1 ispthson NVNVVPV𝑝𝑚00NPathsOnGNPNTrailsOnGNPPathsGP
22 17 20 21 syl2anc P:00VP0=NNPathsOnGNPNTrailsOnGNPPathsGP
23 2 16 22 mpbir2and P:00VP0=NNPathsOnGNP