Metamath Proof Explorer


Theorem 0rest

Description: Value of the structure restriction when the topology input is empty. (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Assertion 0rest 𝑡A=

Proof

Step Hyp Ref Expression
1 0ex V
2 restval VAV𝑡A=ranxxA
3 1 2 mpan AV𝑡A=ranxxA
4 mpt0 xxA=
5 4 rneqi ranxxA=ran
6 rn0 ran=
7 5 6 eqtri ranxxA=
8 3 7 eqtrdi AV𝑡A=
9 relxp RelV×V
10 restfn 𝑡FnV×V
11 10 fndmi dom𝑡=V×V
12 11 releqi Reldom𝑡RelV×V
13 9 12 mpbir Reldom𝑡
14 13 ovprc2 ¬AV𝑡A=
15 8 14 pm2.61i 𝑡A=