Description: Strict dominance over 0 is the same as dominance over 1. For a shorter proof requiring ax-un , see 0sdom1domALT . (Contributed by NM, 28-Sep-2004) Avoid ax-un . (Revised by BTernaryTau, 7-Dec-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | 0sdom1dom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsdom | |
|
2 | 1 | brrelex2i | |
3 | reldom | |
|
4 | 3 | brrelex2i | |
5 | 0sdomg | |
|
6 | n0 | |
|
7 | snssi | |
|
8 | df1o2 | |
|
9 | 0ex | |
|
10 | vex | |
|
11 | en2sn | |
|
12 | 9 10 11 | mp2an | |
13 | 8 12 | eqbrtri | |
14 | endom | |
|
15 | 13 14 | ax-mp | |
16 | domssr | |
|
17 | 15 16 | mp3an3 | |
18 | 17 | ex | |
19 | 7 18 | syl5 | |
20 | 19 | exlimdv | |
21 | 6 20 | biimtrid | |
22 | 1n0 | |
|
23 | dom0 | |
|
24 | 22 23 | nemtbir | |
25 | breq2 | |
|
26 | 24 25 | mtbiri | |
27 | 26 | necon2ai | |
28 | 21 27 | impbid1 | |
29 | 5 28 | bitrd | |
30 | 2 4 29 | pm5.21nii | |