Metamath Proof Explorer


Theorem 0sdom1dom

Description: Strict dominance over 0 is the same as dominance over 1. For a shorter proof requiring ax-un , see 0sdom1domALT . (Contributed by NM, 28-Sep-2004) Avoid ax-un . (Revised by BTernaryTau, 7-Dec-2024)

Ref Expression
Assertion 0sdom1dom A1𝑜A

Proof

Step Hyp Ref Expression
1 relsdom Rel
2 1 brrelex2i AAV
3 reldom Rel
4 3 brrelex2i 1𝑜AAV
5 0sdomg AVAA
6 n0 AxxA
7 snssi xAxA
8 df1o2 1𝑜=
9 0ex V
10 vex xV
11 en2sn VxVx
12 9 10 11 mp2an x
13 8 12 eqbrtri 1𝑜x
14 endom 1𝑜x1𝑜x
15 13 14 ax-mp 1𝑜x
16 domssr AVxA1𝑜x1𝑜A
17 15 16 mp3an3 AVxA1𝑜A
18 17 ex AVxA1𝑜A
19 7 18 syl5 AVxA1𝑜A
20 19 exlimdv AVxxA1𝑜A
21 6 20 biimtrid AVA1𝑜A
22 1n0 1𝑜
23 dom0 1𝑜1𝑜=
24 22 23 nemtbir ¬1𝑜
25 breq2 A=1𝑜A1𝑜
26 24 25 mtbiri A=¬1𝑜A
27 26 necon2ai 1𝑜AA
28 21 27 impbid1 AVA1𝑜A
29 5 28 bitrd AVA1𝑜A
30 2 4 29 pm5.21nii A1𝑜A