Metamath Proof Explorer


Theorem 0subm

Description: The zero submonoid of an arbitrary monoid. (Contributed by AV, 17-Feb-2024)

Ref Expression
Hypothesis 0subm.z 0˙=0G
Assertion 0subm GMnd0˙SubMndG

Proof

Step Hyp Ref Expression
1 0subm.z 0˙=0G
2 eqid BaseG=BaseG
3 2 1 mndidcl GMnd0˙BaseG
4 3 snssd GMnd0˙BaseG
5 1 fvexi 0˙V
6 5 snid 0˙0˙
7 6 a1i GMnd0˙0˙
8 velsn a0˙a=0˙
9 velsn b0˙b=0˙
10 8 9 anbi12i a0˙b0˙a=0˙b=0˙
11 eqid +G=+G
12 2 11 1 mndlid GMnd0˙BaseG0˙+G0˙=0˙
13 3 12 mpdan GMnd0˙+G0˙=0˙
14 ovex 0˙+G0˙V
15 14 elsn 0˙+G0˙0˙0˙+G0˙=0˙
16 13 15 sylibr GMnd0˙+G0˙0˙
17 oveq12 a=0˙b=0˙a+Gb=0˙+G0˙
18 17 eleq1d a=0˙b=0˙a+Gb0˙0˙+G0˙0˙
19 16 18 syl5ibrcom GMnda=0˙b=0˙a+Gb0˙
20 10 19 biimtrid GMnda0˙b0˙a+Gb0˙
21 20 ralrimivv GMnda0˙b0˙a+Gb0˙
22 2 1 11 issubm GMnd0˙SubMndG0˙BaseG0˙0˙a0˙b0˙a+Gb0˙
23 4 7 21 22 mpbir3and GMnd0˙SubMndG