Description: The zero submonoid of an arbitrary monoid. (Contributed by AV, 17-Feb-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 0subm.z | |
|
Assertion | 0subm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0subm.z | |
|
2 | eqid | |
|
3 | 2 1 | mndidcl | |
4 | 3 | snssd | |
5 | 1 | fvexi | |
6 | 5 | snid | |
7 | 6 | a1i | |
8 | velsn | |
|
9 | velsn | |
|
10 | 8 9 | anbi12i | |
11 | eqid | |
|
12 | 2 11 1 | mndlid | |
13 | 3 12 | mpdan | |
14 | ovex | |
|
15 | 14 | elsn | |
16 | 13 15 | sylibr | |
17 | oveq12 | |
|
18 | 17 | eleq1d | |
19 | 16 18 | syl5ibrcom | |
20 | 10 19 | biimtrid | |
21 | 20 | ralrimivv | |
22 | 2 1 11 | issubm | |
23 | 4 7 21 22 | mpbir3and | |